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ABSTRACT

The automation of design has been approached from many points of
view. In our group here at UCLA we adopt the attitude that design automa-
tion is just another problem where a large set of statements is presented,

some statements with a known, some with an unknown validity.

We want to transform problems in general to obtain a general set of
Boolean equations and solve it. The number of Boolean variables in such
equations is usually very large and this fact has limited the practice of ap-

proaching logical problems through the solution of Boolean equations.

Recently, a new processor, called Boolean Analyzer (BA), has been
proposed by A. Svoboda. This unit operating as a part of an automatic com-
puter is based on the idea of processing many terms of Boolean Algebra in
parallel. One of its operational capabilities is the solution of large systéms
of Boolean equations in a reasonable time (if we compare it to standard

procedures).

The Boolean Analyzer contains two basic hardware algorithms:
1) An algorithm for the determination of the set of prime implicants of a
given Boolean function of up to 14 variables (for the first proposed model).
This algorithm is based on the ordering property of the set of implicants of
a Boolean function. 2) An algorithm for solving Boolean equations of up to
22 variables (for the first proposed model) with up to several millions of

terms.

In order to promote the use of the Boolean Analyzer in its two modes
of operation we developed some applications to logic problems. In this
“report we propose to show how the Boolean Analyzer should be integrated
with a geheral purpose computer (or with a variable structure computer) to
solve efficiently: 1) the Three-level é_ND-_I_;_IOT synthesis problem of logic
networks using only Zrue inputs ‘(Sy‘nthesis of TANT networks), and 2) the

general problem of synthesis of logic networks using a restricted inventory



of integrated circuit modules. Our task includes reformulation of those
problems into Boolean equations to prove their solubility by a Boolean

Analyzer integrated with another system.
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CHAPTER I

PREVIEW OF THE DISSERTATION

1.1 A general survey of methods for solving Boolean

equations
The original formulation of the problem was first

presented by George Boole in his "Investigation of the
Laws of Thought"1 by using variables representing the

validity or non-validity of propositions which we call
today Boolean variables.

To solve a system of Boolean equations we want
to determine the unknoﬁn validities of certain propos-
itions as functions of some others with known validities.
We say that a set 6f such functions 1s a solution of the
given system of equations when the condition defined by
the set of functions implies the wvalidity of all equations
of the system. Boole provedl.that any loglcal problem
in general may be expressed by means of certain logical
operators which represent the given problem and which
can be reduced to a system of logical equations (Boolean
equations).

The problems we are interested in in this diss-
ertation are those which are related to the field of
logical deslign of computers and we consider them in this

work as an example of how problems encountered in the



design of mathematical machines may be solved using the
same logic which makes possible the existence of these
machines.

Although the Boolean algebra and its applications
to the logical design of computers have been extensively
presented in the literature, its particular application
to solution of logical design problems by systems of
Boolean equations attracted almost no attention. The rea-
son for this may be that in this type of problem we get
systems of Boolean equations with too large a number of
Boolean variables, or that because of lack of effective
methods for solving systems of Boolean equations with
large number of variables we find thils approach impract-
icable.

Today there are two effective ways in principle
how to solve systems of Boolean equations: 1) by com-
puter programming and 2) by special computer design. The
computer programming methods will be presented 1n Section
1.2. A special computer design for solving Boolean equ-
ations, called Boolean Analyzerlg, has been recently
proposed by A. Svoboda and will be described 1n Chapters
II and III.

In this section we present a panoramic view of
classical methods from the literature in three maln

groups: Algebraic, Matrix, and Tabular (Map) methods.



1.1.1 Algebraic methods

The first algebraic method for solving systems of
Boolean equations was developed by George Boolel. This
method 1is essentially an elimination method similarkto
the one used in linear algebra. The result however has
to be interpreted following specific rules of interpreta-
tion of symbols 1like 0/0, 1/0. The main drawback of this
method 1s that for equations with high number of variables
the method requires a great amount of algebraic operations,
the insertion of special symbols (0/0, 1/0...) and a
final interpretation of the solution. George Boole1
works algebralicly only with problems with small number
of variables and finds the solutioné for problems with
high numbers of them in speclial cases only.

Extensive studies of algebralc methods and of the
existence of solutions followed Boole's contribution.
Berstein2 studlied the conditions for a Boolean equation
to have a unique solution. GotS3 developed general
Amethods for solving logic algebraic equations. Zemanek“,

6 8, Carvallog, Rudeanulo

Rouche5, Phister, Shubert7, Klir
and many others have done significant contributions in
this field. It is, however, a common feature of the

algebralc methods that these are not easily applicable
to systems with a large number of variables because of
the amount of algebralc operations required. Sometimes

it 1s possible to obtain a solution by inspecting the



form of the given system. In general, however, this is
not the case and therefore we do not consider it here.

Rudeanu10

proposed a general method for solving
Boolean equations and presented some interesting applica-
tions to the problem of conductibilities of a multipole.
In order to computerize an algebraic method it
is required to generate an algorithm that will avold the
use of algebralc expressions which'are difficult to handle
with computers. Therefore it will be better, from the
computer implementation point of view, to transform the

problem to matrix form or to use tables which in general

are more sultable for computers.

1.1.2 Matrix Methods

Boolean equations represented using Boolean

11

matrices were first used by Hohn and Schissler in the

design of combinational relay switching circuits. Camp-
eaul2 uses Boolean matrices for the synthesis and analysis
of counters in digital systems and presents a method for
solving Boolean equations using matrices. This method

‘is based on the concept of the matrix determinant of the
system and is analogous to Cramer's rule in systems of
linear algebraic equations. The problems that these

matrix methods present for systems with a large number

of variables are well known because they are similar to



those encountered in linear systems} These are: the
handling of singular matrices, the matrix ihversion
problem, etc.

Another method which can be classified as both
a matrix and a tabular method is the one developed by
Ledleyl3 and extensively applied to logic circuit designlu.

This method is based on the concept of designation numbers

which are used to represent all combinations of logical
values that a given variable takes in the given system
of equations. Using this concept a Boolean matrix may

be associated with every Boolean equation of the system.
The logical combination (bit by bit multiplication) of
the matrices representing every equation gives a unique
matrix which is used to determine the total number of
existing solutions and the expliclt algebraic form of
every solution. This method is very similar to Svoboda's
tabular16 method which we shall present in the next sec-
tion. It should be salid here that although both methods
are very similar, the convenient tabular presentation of
Svoboda makes easy the determination of every possible
solution by means of adequate maps and also the treatment
of the singular cases of certain systems (l.e. systems

with no solution).

1.1.3 Tabular Methods

The use of maps for the solution of systems of



Boolean equations was first proposed by Maitrals. His
map approach applies to a certain class of Boolean Func-
tional equations only and therefore is not considered
here. An extension of the map approach to the solution
of general systems of Boolean equations is due to Svoboda
16 who introduces for the first time the concept of log-
ical relation between logical spaces.

He considers a logical space (a map) where the
simultaneous validity of the equations of the system is
plotted and where the logical space corresponding to
unknown variables 1ls separated from the logical épace of
the known variables. The logical dependency between
these spaces glves complete information about the number
and nature of the solutions including the singular cases
when the known variables are not logically independent.

The statement of the problem of solving systems

of Boolean equations 1s as follows:

Given the system of simultaneous Boolean equations

fi(xl,c..,xn ; yl,oﬂ'ym) = gi(xl"."ym) (1)

(1 = 1,2,3,...,k), where {xl,...,xn} and {yl,...,ym} rep-
resent the sets of known and unknown variables respect-

ively, it is sought all sets of functions



yJ = yj(xl,...,xn) (J=1,2,...,m) (2)

that satisfy the system (1).%

The logical space {xl,...,xn} of the known vari-
ables contains 2" points which correspond to all possible
values of the variables XqseeesXpe To every point of
this space an identifier x may be associated which is

obtained by the formula

0

x = 2° x 1 n-1

+ 2 X5 + ...+ 2 X (3)

1

Similarly, to every point of the logical space
{yl,...,ym} of the unknown variables there exists an
identifier y given by the formula

0 1 m~-1

y =2 Y1 + 2 Vo + ... + 2 y (n)

m
The logical space where the simultaneous validity

of the system (1) is represented is a rectangular map

containing as columns the x identifiers and as rows the

y identifiers. Every entry E of this map (Figure 1)

¥ A set of functions of the form (2) satisfies the
system (1) if the set of functions (2) implies the
system (1).



.
N
a =
~
-
-

Figure 1

Discriminant of a System of Equations

is one of the 2n+m

possible comblnations of the loglcal
space where the system (1) is defined. The variable E
will take the value 0 or 1 depending whether 1ts
corresponding combination of variables makes the system

of equations (1) non-valld or valld respectively. ‘The

map thus obtained (Figure 1) 1s called the discriminant

D of the system because it contains all information about

the existing solutions (including their number).



The total number of exlisting solutions of the
type (2) is obtained from the discriminant as follows.
Let Ux represent the count of all non-zero elements in
a certalin column x of D; and let us form the Ux num-
bers for all columns x (x = 0,...,2“’1), then the total
number of solutions of the form (2) is the product S

of all Ux integers.

S = I u.. (5)

If S # 0 every solution (2) of (1) may be
obtained by decomposition of the discriminant D into
S-possible D_ (s = 1,2,...,5) maps such that Dy = D
and every one of them contalns only one non-zero element
in each column.

To explain the rules of decomposition we make the
following remarks:

1) Each Boolean function in the form (2) must
have a unique value for every given combination of values
of known variables Xy .

2) Just a single point corresponds to that
combination in the column x.

Should a decomposition map Ds of D contain
more or less than one non-zero element, it would not be

of the form (2).



The algepraic expressions (2) of the solutions
are easlly obtained from each of the Ds maps. This
wlll be shown later in examples.

If S = 0, no solution of the form (2) exlsts
and the system (1) is then said to be singular and this
means that the known variables are not independent so
that a definite logical relation between them must be
respected to bring into existence at least one solution
of the system of the form (2). Such a logical relation
- 1s obtalined by equating to logical zero the logical sum
of the minterms corresponding to those identifiers x of
the space of known variables for which no non-zero values
are found. The restricted discriminant Ds is used to
obtain the solutions of the given system as in the non-
singular case (S # 0), the only difference being that
the rule-out columns are considered as don't care cases
for possible simplification of the algebraic expression
of the solutions. In the case of S = 0, a solution of
(1) is thus an expression of the form (2) together with
the equation reporting the existing logical relation

between the known variables.

Examples
1) Non-singular case (S # 0)

Solve the system of Boolean equations

10



xl + x2 = X3 + yl

— (6)
Vo ¥y X =XV,

For convenience we first transform the system (6) into

an equivalent system using the relation

(f=g) & (fg + gf =0) (7)
Each equation of (6) is thus transformed into the follow-

ing equations respectively:
Xy X5 ¥q * Xy X5 ¥q = 0 (8)

Xo Yp ¥ Xy ¥1 * ¥ ¥y % =0 (9)

The left-hand-sides of equations (8) and (9) are
now added in Boolean sense and we obtain an equation (10)

which is equivalent to the given system (6).

Xy Yo ¥ X5 ¥ Y, ¥ Xt Xy X539 =0 (10)

The diseriminant D corresponding to Equation (10) is:

012 3
0 1
1111 1
2 111
3 1

1 12 3

Figure 2. Example of Discriminant.

11



The total number of existing solutions is

Xx=3

S = I Ux = 1x1x2zx3=6
x=0

The six decompositions of D are

o1 2 3 Xoi123 vXo0123

0 1 0 1 0 1

1171 1 1] AR

2 2 1 2 .

3 3 3 ]
D, Dy D3

0123 $N01 23 Xo1 23

ol | ol [ 0

G| IRE IEE

2 1 2 Ak 2 ]

3 3 3 ]
D, D, D,

Figure 3. Discriminant Decompositions.
The algebraic expression corresponding to every decomp-

osition DS of D 1s obtained uSing the explicit truth

tables of the unknown variables as follow

™ 2 3
01
0 1 PN Ao 1
11111 1 :> 0t1 11 0
2 1 1 1
3 _
yl = xl + x2 yZ = 0

12



y 0 2 3
‘ 0 1
Th
2 1
3
D,
X
0} 1
111
2
3 1
D;
Similarly,
Du gives
D5 gives
D6 gives

2) Singular case (S

X

1
XN 0 1 X"2X101
of1] 0

1 1l
Vp F %5 o = X%,
X X

1 1
20 1 SNl
ol1]1 0

Vg =X X5 Ty T XX,
yp =%t X Yo = X X,
yi = %, Yo = %5
¥, = X+ %, Vo = Xy

0)

System of equations

13



Yyt ¥, =X Y,

X3 97 = %+t Y,

Using the identity (7) the system (11) becomes

Yy XtV v Xy ¥y ¥y 7

0

(11)

(12)

Xy Xy ¥y Yo+ Xg Xy ¥ X3 ¥y v Yy Xy ¥ Yy Y, =0

(13)

The left-hand-sides of Equations (12) and (13) may be

added together reducing the original system (11) to the

following equation:

Yy Xy ¥V, * Xy Y, ¥ Xy Xy ¥y Yy b X3 X5 Y,y

The discriminant D 1is represented in Figure 4,

X
Y™S_01 234567
0 1 1
1 1| |1
2
3

v - 00 1 10110

X .

Figure 4

Discriminant of a Singular System

14
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The number of solutions are

x=T7

S = 1 U.=0x0x1x1x0x1x1x0=20
x=0 X

The logical relation between known variables is obtained
considering the columns of D with no non-zero elements

(Figure 5).

j\\f\\o 1 234 56

T 7 117
%/
%/R//RRY,

Figure 5,
This logical relation is ,

W N R o
N

Zero Columns of Discriminant

1 Xp %3 = 0 (15)

If we rule-out from D the columns with all-zero elements
we obtain the reduced discriminant DY which gives in

this case a unique decomposition and hence only one sol-

ution:

] 74 1 3 %%
1| 7 %R
V1% Yo =0

15



The solution of the system of Equation (11) 1s
yl = xl (16)

(17)

<
N
i
o

1 %o X3 = 0 (1%)

Effectively,if we substitute (16) and (17) in the orig-

inal system we obtaln

Xy = Xy which 1is an ldentity

[i}

Xy

Using identity (7) it can be shown that this last

equation 1s equivalent to

Xq x3 X, + (x1 + x3) X, = 0

which is identical to relation (15). Therefore equations

(16),(17) and (15) form the solution of the given system.

1.2 Computer Programming Solution of Systems of Boolean

Equations.

The Svoboda's tabular method described in Section
1.1.3, can be applied to solve systems with any number
of Boolean variables. When this number 1s larger the

hand method is not practicable and a computer must be used.

16



When too large, the computing time of standard computers
becomes prohibitively large and speclal operation hard—
ware (proposed by Svoboda in 18) is necessary.

A FORTRAN IV program has been developed17
(Appendix I) which solved systems with up to 9 variables¥,
This program accepts equations of the type (6) computes
and prints out the discriminant of the system, prints out
the total number of existing solutions and the truth
table of every solution.

In the singular cases, a printout of the logical
relation between known variables is given.

Any of the stand ard general purpose digital
machines available today executes a computer program in

a sequential fashion, 1.e. instruction after instruction.

This means that any computer program that will iImplement
any classical algorithm (Section 1.1.3) for solving
Boolean equations has to process each Boolean term of

the system separately (in a sequential manner). This

fact imposes a basic limitation on any software implement-

ation, of any method for solving Boolean equations.

# In principle, programs to solve systems with higher
numbers of variables can be developed. However, the
recently proposed Boolean Analyzer18 by far dissuades
any programming effort as we shall see later.

17



It is possible, however, to achieve parallel processing
18

in Boolean Algebra by using special hardware equipment

as a part of a digital computing system. This parallel

processing of Boolean terms, first introduced by Svobodale,

makes possible to compute the discriminant of the given
system of Boolean equations 1in a very short time compared
with the time required in a sequential software-type
implementation. For that reason no further effort was
made in developing optimal computer programs for solving
Boolean equations.

In the folldwing chapters we Shall consider in
detail how parallel processing of terms 1n Boolean Alge-
bra can be achieved and how it applies to the solution
of systems of Boolean equations and to problems stated

in terms of such systems.

18



CHAPTER II

THE UCLA VARIABLE STRUCTURE COMPUTER SYSTEM

2.1 The Fixed-Plus-Variable System

In 1960 Estrinl9 proposed a new concept ih com-
puter organization called a variable structure computer
system. This system combines the characteristics of
general-purpose and speclal-purpose computers to achleve
effective computer solution of a vaste class of problems.

The system, also called Flxed-Plus-Variable system,
consists of a general-purpose Fixed structure computer
(F) and a variety of high-speed special purpose problem
oriented subsystems which form its Variable structure
part (V). A control unit called Supervisory Control (SC)

coordinates both structures (Figure 6).

CENTRAL oo External
MeMoryY Me.moq
PROCE 5%0R 3 I/o
F
T Sy —=]
f
5C
¥
SPECIAL
PURPOSE Pemony
STRY CTUR.H MEMORY [a— BACK~UP
Externatl Figure 6
v MemovsJfo Variable Structure System

19



2.2 The Boolean Analyzer as a part of the UCLA Variable

Structure Computer

The organization of the variable structure com-
puter offers the possibility of solving systems of Boolean
equations in a more efficlent way than using a software
implementation of any classical algorithm. A hardware
V-structure implementing the algorithm may be addressed
and monitored by the general purpose computer. The eff-
iciency of such an approach is evidently higher than the
all-software implementation, however, 1t does not offer

any parallel processing feature within the V-structure.

Svoboda's new theoretical results on the ordering of imp-
licants of a Boolean Function20 made possible the dev-
elopment of another new algorithm18 which leads to the
design of a special hardware operation unit called Boolean

AnalyzerlB.

The Boolean Analyzer system as proposed in18
(Figure 7) is composed of a general purpose computer (SDS,
Figure of computer) a Circulating Memory and the Boolean
Analyzer unit proper which includes a logical operational
unit, a control unit, a snake delay unit and proper inter-
face units. A more detalled description of the system
is given in Section 3.2.

For the purpose of this chapter 1t is sufficient

to say that the logical operation unit of the Boolean

20



SIGMA 7

Control Unit

Triadic
Counter

s

Hp

Indexing
Block

!

y

Mode

Binary
Counter

Il

Figure 7. Block Diagram of the Boolean Analyzer

21

Interface
# 1

Logical
Operation
Unit

-Interface
2
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Analyzer as it stands today21 performs the parallel pro-

cessing of the Boolean terms. To explain it, let us have
a system of Boolean equations written in the form F = 0
(as in Equation (10)) and its terms stored in parallel

in speclial registers of the logical operation unit. A

triadic counter counts seguentially from 0 to 3n+m (n and
m represents the number of known and unknown variables
respectively) and its content is compared in parallel
with every Boolean term 1n the special registers. The
result of each such. comparison is a bit of information
which is registered in the circulating memory.

It is clear that for an equation of n+m total
number of variables, 3n+m sequential comparisons are
required. This number is independent of the number of
Boolean terms contained in the special registers.

Estrin's concept of variable structure computer

organization permits reduction in the 3n+m

required
sequential comparisons by using instead of a unique tri-
adic counter any power of 3 of them (N = 3?) working in
parallel (Figure 8). Each triadic counter, TCi,
(1 =1, 2, ..., N) should count from

[(i-1) * pJto[1 + p - 1] where 1 =1, 2, ..., N

and p = 30

.

The total processing time of the logic operation

unit is thus reduced by the factor of N.

22
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The circulating memory should now provide data
storage for N simultaneous data channels (Multi-RAD cir-

culating memory, Figure 8).

Finally, a supervisory control is required in

addition to the original control unit.

24



CHAPTER III

THE BOOLEAN ANALYZER PROPER

3.1 Theory

The Boolean Analyzer as proposed in reference
18 has two basic modes of operation: 1) Computation
of the discriminant of a system of Boolean equations and
2) Prime implicants determination\of a given Boolean
function. The theoretical basis for the Boolean Analyzer
is extensively presented by Svoboda in reference 18. 1In
essence there are two fundamental theorems that make

the parallel processing of Boolean terms possible. The

first deals with the determinationﬁof non implicant min-
terms of a Boolean function, the second with their order-
ing.

In this section we present these two theorems
with detailed examples of their application. Their proof
may be found in reference 18.

z

Let ¥ = h th = 0 be a Il - form corresponding to

the complement of the given Boolean function y.

X . (18)
L

Each term th is a Boolean function of the form

e Ry R (19)

25



where the variable ii takes on one of the values 1, Xy
or Ei exclusively, (for every 1 = 1, ..., n, n = number
of variables of y). It is clear that there are 3n poss~
ible Boolean functions of the form (19) which may be
considered as elements of a 3n—logica1 space T. The

subscript h 1s the identifier of the elements th of

the space T.

The value of h in (20) ranges from 0 to 3n-1.

h =h

0
13

h
+ h, b+ ...+n 3"t=1 n 3i-1 (20
1=1

The correspondence (21) between il and hi being

established
hi l 0 1 2
I _ (21)
xi 1 xi xi

the identifier h in (20) of every term (19) is uniquely
determined and a one-to-one correspondence exists between

every integer in the set {h} and every Boolean term (19).
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Example: Let vy = fu Xy X + X, El + Xy Xg ié X) =t +

t, + tc =0 and n = 4,

b

Using (21) we obtain

33 32 31 30
Xy X3 X5 Xq hu h3 h2 h1 h
ty Xy X, X 2 0 1 1 58 = a
t, X5 ii 0 0 1 2 5 = b
t, Xy X3 ié Xy 1 1 2 1 43 = ¢

Y = t58 + t5 + tu3 .

Each term ¢t in Equation (18) implies Y, but

h
y = Y by definition of Y, therefore the terms th are
nonimplicants of y. In other words every term ¢t
implicant of Y is a non-implicant of y.

In order to determine all implicants of y it
is sufficient to cancel from the 3n space T of all
possible terms those which are non-implicants of y.

This statement 1s proven by the followling theorem.
Theorem 1. (Svoboda (18))

Given a Boolean function y and 1lts complement

Y, let {th} be the set of implicants of Y, and

{th,} represent all terms in T

27



The sufficient condition for a definite t,, , (ht =
n

z h'J.3J"l , th,s{th,}), to be a non-implicants of y
J=1 n

is that for at least one th - term of Y, (h =L hJ
J=1
-1
3971, ¢ el D),
hJ + h'J #3 for J=1,2, 3, ... n (22)
Example 1.
Let y = x, + 23 Xy (n = 3). The complement

function Y is

Y=y-= x2(x3 t xq) = x5 X3 * X, xl
The set {th} has two terms: t15 = x3 X
t8 = x2 x1

The triadic representation of thelr identifiers are

t15 : (2 1 0), t8 : (0 2 2). (Table I)

The space T 1s composed of 33 = 27 th,-terms

which is represented in Table I (see following page).
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TABLE I

SPACE OF TERMS T

{*n} T~space
[] 1 1 ] ”
t, | b hg hy hy| h ty,
X Xy 8 0 0 O 0
X 15 0O 0 1 1 X
32 o 0 21| 2 x1
0O 1 O 3 Xo
0O 1 1 b4 X2X1
o1 2] 5 X%
o 2 0| 6 %5
0 2 1 7 iexl
0 2 2| 8 %oX]
i1 0 O 9 X3
1 0 1 10 X3 Xq
1 0 2]11 x3 X
1 1 1 13 X3%XpX4
1 1 2 14 x3x221
1 2 0115 x3%5
1 2 1 16 x3%pX 1
2 0 0} 18 23
2 0 2 20 23 il
2 1 1 22 i3x2x1
2 2 0 24 2322
2 2 1] 25 X3%oX4
2 2 2 26 i3i221

29




Table II displays the step-by-step application

of condition (22). The implicants of y form the set

20

T . This set Tc has an ordering property that leads

c
to the selection of prime implicants of y.

Definition: Definition of prime-implicant.

Let th be an implicant of vy, eTc, and let

y
th' be an implicate of th, th = th' 3y We say that
th is a prime-implicant of y 1if the following prop-

osition

[(h=> ¥) N (b => £,0) N (8 # 6,0 (s5hy) (24)

is true for all th"

Theorem 2: Ordering of implicants. (Svobodazo)

If a term t_ =S t,, then a > b. (25)

b,
Theorem 3: Exclusion of non-prime-impllcants.
If a term th R theTc , 1s a prime implicant of
y then any other term tk implicant of th is not a
prime implicant of vy.

Example 2: Ordering of implicants (see Table II).

» [y =2 £5) = (4 > 3)].

30
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Example 3: Exclusion of non-prime-implicants
(see Table IIT).

The term with the lowest identifiers t3 = X,
is a prime implicant because it has only one implicate,
knamely itself th' =‘x2 » Wwhich 1s ruled out by relation
(24). In consequence and by virtue of theorem 3, terms
tu , t5 s t12 R t13 s tlh , t21 R t22 s t23 , are can-
celled 1in Tc as non-prime-implicants of y. Term t19 sh
§3 xl i1s a prime implicant because its implicates (ruling
out §3 x;) are t,g = §3 and t; = x; which are CAN-
CELLED in Tc meaning that they are non-limplicants of vy.

Based on the above concepts and theorems, the
algorithm for the prime-implicants selection of y has

the following three steps:

1) Determination of the ordered set Tc containing all
implicants of vy.

2) The term tp s tpeTc , with smaller i1dentified p

is a prime-implicant of y and is transferred to the set
{th}. ( {th} is empty at the start of the algorithm
and contains all prime implicants of y at the end)

3) All implicants of tp are cancelled in Tc’

Steps 2 and 3 are repeated until Tc is empty.
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TABLE III
SELECTION OF PRIME IMPLICANTS
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Table III displays the application of Steps 2 and

3 to example 1.

3.2 Components

The logical design of the Boolean Analyzer (BA)
is presented in detail in reference 21. 1In this section,
and for the purpose of its simulation (Chapter V), we
describe briefly the hardware components and character-
istics of the Boolean Analyzer.

The Boolean Analyzer System (Figure T7) 1s composed
of three subsystems:

1) A general purpose computer, (SDS, SIGMA 7)

2) A circulating memory : for ekample, the

' SDS Rapid - Access-Data (RAD) storage system.

3) The Boolean Analyzer Unit (BAU) proper.

BAU is composed of the following parts:

1) An Interface #1 between the general purpose

computer and the BA.

2) An Interface #2 between the BAU and the

circulating memory.

3) The logic operation unit (LOU)

4) The control unit

5) The snake unit

34



3.2.1 The general purpose computer is a Sclentific
Data Systems SIGMA 7 Computer, whose READ DIRECT and
WRITE DIRECT instructions facilitate its use in real-time,

time-sharing, and multiusuage applications.

3.2.2 The Circulating memory (SDS RAD SYSTEM, Models
7203/7201) includes 256 tracks, l6ysectors/track, 360
bytes/track at a rate of 5u seconds/8 bit-byte and con-
tains only one read/write amplifier with proper electronic
switching. Its data may be organized in two modes:

Mode A: 27 groups/sector, each group with 88 bits

Mode B: 64 groups/sector, each group with 40 bits.

3.2.3 The logical design of Interfact #2 between the
BAU and the circulating is presented in detall in refer-
ence 22 and is composed of an 8-bit read-shift-register
(Reading Buffer) and an 8-bit write-shift-register

(Writing Buffer).

3.2.4 LOU contains special registers for storing triadic
numbers (the identifiers h of the terms in Y = 0) and
special combinatorial network which generates a signal

Ck according to its switching mode:

Jk + h'j # for every J) =$>(Ck = 1)

(Theorem 1, Section 3.1)

Mode A: (h
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. | k 1 k =
Mode B: {(hJ + h 5 #£3) N [(hJ 0)

Zﬁ?(h’J = 0)]1} =f?(Ck = 1)
(Theorem 3, Section 3.1).

3.2.5 The Interface #1 provides the linkage between the
BAU and SIGMA 7 computer and contains proper encoding
and decoding devices to store and retrieve data from the

registers of the LOU.

3.2.6 The Control Unit includes: 1) a binary counter,
counting from 0 to 222-1; 2) a triadic counter, counting
from 0 to 314-1; 3) an Indexing Block whose mission 1is
to provide proper indexing of flip-flops in the LOU; i)
a pulse generator; 5) two special registers, Ht and
Hb for temporary storage of the contents of the triadic

and binary counters respectively.

3.2.7 The Snake Delay Unit logically combines the in-~
formation coming from two different sources, the RAD and
the LOU, whose organizatlon has different bases: the RAD
is organized in 8-bit bytes while the LOU may have a tri-
adic organization. The Snake Delay Unit contains two
delay logical circuits, Snake #1 and Snake #2, with

proper control for two-way information transfer between
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RAD and LOU. Two modes of data organization are possible:
Mode a which transforms a 9-bit lnput sequence into an
8-bit output sequence and Mode b which transforms an 8-bit
input sequence into a 9-bit ouput sequence.

Svoboda18 gives operation time estimates for the
Boolean Analyzer. Its operation time is a function of
the number of variables and the size of the LOU specilal
registers. For a m&del with 100 speclal registers the
followiﬁg estimates were givenlB:

1) For discriminant computation the time ranges
from .00% sec for 500 terms of 10 variables to 2 hours
for 500,000 terms of 20 varlables.

2) For prime implicants determination the time
ranges from .0022 sec for 100 terms of 7 variables to
383 sec for 8,000 terms of 14 variables.

The operation time increases logarithmically (as
a rough approximation) with the number of variables.

The circulating memory 1is mainly the device that
imposes a limitation on the number of variables. The
SDS RAD system, for example, has a capacity of 12 million
bits. For functionswith 15 variables, 315 ~ 14 million
bits are required in the circulating memory which exceed

the RAD storage capacity. The utilization of a multi-RAD

memory system (Figure 8) could overcome this limitation.
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A great advantage of the parallel structure of the
LOU is that it can easily be extended to allocate higher
numbers of variables, because the same simple circuit is

used for each variable.

3.3 Modes of Operation

The Boolean Analyzer unit operates in two basic
modes: Mode I corresponding to the realization of Theorem
1 (Section 3.1) and Mode II corresponding to the implement-

ation of Theorem 3 (Section 3.1).

These two modes of operation constitute the
elementary logic operations of the Boolean Analyzer and
consequently any glven problem to be solved with this
system must be formulated in terms of them. This formu-
lation as it applies to certain problems shall be the
task of Chapter IV. 1In this section we present the
procedures* corresponding to Modes I and II as they are

executed by the Boolean Analyzer Unit (Figure 7).

¥More details on these procedures may be found in

18 22

the works of Lonnie Laster and George Gilley .
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3.3.1 MODE I: Non-implicants determination
This mode of operation corresponds to the deter-

mination of non-implicants of a Boolean function.

If all non-implicant terms are desired, then the B.A.
operates in triadic mode, using the Triadic Counter; the
mode selection is made in the mode control.

If only non-implicant minterms afe seeked, then the mode
control selects the binary counter and the B.A. operates
in binary mode.

The procedure corresponding to MODE I 1is outlined
in the flowchart of Figure 9. The following initial
conditions which can elther be set manually or automatic-
ally by the digital computer (SIGMA 7), are required:

1) The mode control selects the triadic counter

(TC) and the binary counter (BC)

2) LOU registers are organized elther in Mode a
(corresponding to mode control selection of
TC) or Mode b when BC 1s selected. LOU com-
binatorial network 1s connected in Mode A.

3) Snake Unit 1s connected either in Mode A
(corresponding_to selection of TC) or Mode B,
corresponding to selection of (BC)

k) Circulating Memory, either in Mode A (TC

selection) or Mode B (BC selection), is filled
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with zeros.
5) Triadic and Binary counters reset to zero

6) Indexing Block reset to zero.

3.3.2 MODE II: Non-prime-implicant determination

In this mode of operation, the Boolean Analyzer
eliminates in the circulating memory (which is assumed to
contain the implicants of a given Boolean function as the
result of Mode I) those implicants which are not prime-
implicants. The cancellation procedure is a direct imp-
lementation of Theorem 3 (Section 3.1) reformulated in

the following condition

k ' kK _ —
{?J *h'y #S)ﬂfﬁﬁ 0)%%hj Og}

Y
for every J =$(Ck = 1) (26)

The procedure corresponding to MODE II is des-
cribed in the flowchart of Figure 10. The following in-
itial conditions are required:

1) Circulating Memory (used in Mode A) contains

results of Mode I.

2) LOU is in Mode B

3) Snake Unit in Mode B

) Indexes set to zero

In Table IV MODES I and II are summarized.

43



Figure 10. Flowchart corresponding to MODE II.

Initlal
Conditions

!

TC=0

+

RAD Reads content
C of address TC

TC+1l » TC

Every block rk'in LOU gen-
erates a signal Ck according

Kk to K '
{(hJ j)#3) [(hj=0)=#(hj=0)])

for every j =% (Ck=1)

+h
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Switching Net of LOU
in MODE B properly
combines all Ck sig-

nals producing a
cancellation C.

Address A
from TC

!

RAD writes
C in Addr. A

NO

Store HT

in LOU

,

HT + TC

Figure 10(Continued), Flowchart corresponding to MODE II
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CHAPTER IV
APPLICATIONS OF THE BOOLEAN ANALYZER SYSTEM

In Section 3.3 we presented the two fundamental
modes of operation of the Boolean Analyzer Unit. In this
Chapter the Boolean Analyzer System (composed by SIGMA 7
and Boolean Analyzer Unit) will be used to solve some pro-

blems in Boolean Algebra.

4,1 Solution of Systems of Boolean Equations

Svoboda's algorithm for solving Boolean Equations
(Section 1.1.3) can be implemented using the Boolean
Analyzer system. The following algorithmic steps are
needed:

Step #1. Transfer of terms in Y = 0 to the

Logical Operation Unit.
Step #2. Discriminant determination.
Step #3. Computation of truth table of every

existing solution.

Step #1 1is executed by proper indexing of the
flip-flopsin LOU and by means of a WRITE DIRECT instruction.
(For details, see reference 21 ).

Step #2 1s computed using Boolean Analyzer in
MODE I (binary mode).

Step #3 1s executed by means of an adequate soft-
ware program stored in SIGMA 7. This program called

SOLDET decomposes the discriminant and gives the truth
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tables of the set of functions corresponding to every
solution. In Appendix I a flowchart and listing of this
program is given. |

In Pigure 11 the algofithmic steps 1, 2, 3 are

summarized.
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Read NT, N

Step

Y.

Figure 11.

L «—100

S
NT > 1007?

Read NT terms
of Y=Q.

NPe-NT - L

!

L terms

Read

i

B.A, in
MODE I
(binary)
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LEGEND

# of terms of
Y 0.

#of unknowns

# of knowns.

SOLDET Subroutine to

determine all
solutions.

Flowchart for System of Boolean Equations.




4,2

Irredundant coverings of a Boolean Function

The problem of finding all irredundant coverings

of a Boolean function y is a classical one and therefore

it will not be presented here in detall. However, it is

the purpose of this sectlion to show how the Boolean Anal-~

yzer system may solve thls problem,

Step
Step
Sfep
Step

Step

Step

#1

#2

#3

#U4

#5
#6

The algorithmic steps are the following:

Transfer of terms of Y = ¥y into the Logical
Operation Unit of Boolean Analyzer.
Determination of all implicant terms of y. This
step 1is executed using MODE I in triadic conexion.
Determination of all prime-implicant terms of y,
by using MODE II.

The covering problem is formulated bullding a
special function z, called Petrick function29.
Steps 1, 2, 3 are applied to function Z = Z.

The prime—implicants of functlion z are printed,
each one of them is an irredundant covering of
the given function f.

The above algorithm 1s summarized in Figure 12.
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Figure 12.

Flowchart for Irredundant @

Coverings.
READ NT, N.
J+—1
L=1lod
is -—
NT > 1002 NT<-NT - L
READ NT READ L
terms terms
B.A. in
MODE I
(triadic)
NO is
NT<L ?
B.A., in
RESET
Lou MODE IT i LEGEND
| NT | Total # of terms
in Y=0.
N |# of variables.

BA | Boolean Analyzer
PI | Prime Impllicant.
Z Petrick Functionj
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00 ¢

READ OUT P.I.
from LOU

is
I>27°

Yes

Print
P.I.

!

Form 2
Function

‘

Compute NT,
N of Z

function

l

TJ=—T1 +1

Figure 12. (Continued).
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4.3 Synthesis of TANT Networks

4,3,1. Introduction

The synthesis of Three-level AND-NOT combinational
networks with Epﬁe inputs (TANT networks) has been studied

by Marley and OgdenZ', McCluskeyZ>, Hellerman26, Marley

27 28. This last author

and Earle“', and recently by Gimpel
presents the first systematic synthesis and simplification
method of TANT circuits. This method is very similar to
the Quine-McCluskey minimization algorithm for two-level
AND-OR logic.

Gimpel's method starts by generating a general
form for the implicants of the given Boolean function f,

called permissible-implicants of f, and in such a way that

it is simple to derive the circuit configuration from this
general form. From the set of permissible implicants, the

set of prime-permissible implicants (which we shall call

here generalized prime implicants) is determined and from
this set those which realize the gilven function with a
minimum number of NAND decision elements are selected.

In this section we propose another method of TANT
synthesls based on the two modes of operation of Boolean
Analyzer (Section 3.3).

The proposed method consists of calculating the
ordinary prime implicants of the given function f and, from
this set, to calculate all generalized prime implicants of

f by solving a system of Boolean equatlions. The selection
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of those generalized prime implicants which form the
minimal TANT network is done by constructing a special
Petrick function29 7 and determining its prime implicants.
The proposed method thus uses the two modes of operation

of the Boolean Analyzer: the MODE II for the determination
of the generalized prime implicants and MODE I 1in triadic

mode for the determination of all minimal TANT networks.

4,3.,2 DEFINITIONS AND THEOREMS

Consider the TANT circult of Figure 13. It is
easily verified that this circuit implements the function

£ = X% ¥ Xo<X1X0) + xlxz(xoxl) 27)

Xo -

)—(—0'1’ X (%o
Xo 2o ~5\¥ et >’¥ .
i
: X]+XD
Xo_'.
X

P
pLBs

Figure 13
Example of TANT Circuilt
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This function is written in AND-OR form as follows:

f = x2x0 + xoxl + xlxzxo

Form (27) of f presents a characteristic structure of sum
of permissible terms (P-terms) whose general form may be

defined in the following way:

Definition 1

Every time P, implicant of a Boolean function f
of n variables and expressed in TANT for (97),may be

written as product of two factors H and T

P = H.T (28)

ii takes the values 1

where H = n-1° xi - «X0%Xq or x4 exclusively (i=0,...,
n-1)
T Tm—le-2"’T1TO 'I‘J = Xpoqtee XAt vxg Xy
takes the values 0 or ii
exclusively. (j = 0,...,m-1),
(i-_-o,. . e ,l’l-l) ’ mf_no
Example 1:
The term P1 = xo(xoxl) has H = Xy T = T1 = (xoxl) =
(x1 + xo).
The term P2 = xlxz(xoxl) has H = Xqs and T = T2.T1 =

x2(xO + xl).

Definition 2

A term P of the form (28) is said to be a
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generalized prime implicant of f (GP-term) if an ordinary

prime implicant ofvf,(in'the sense of the AND-OR logic) or
a sum of any number of them is obtained when a P-term (28)
is expanded using the rules of logical sum, product and
complementation. The ordinary primé implicants of f will
be denoted by OP.

Example 2:
The function f given in Figure 13has the following ordinary

prime implicants:

XgX1s XgX5s XgXqXse
The terms P1 and P2 of Example 1 corresponding to the TANT
form (27) of f are generalized prime implicants. Effect-

ively, according to Definition 2,

XO=X

+d
L

1 T 8P = xp(xx5) = xg%X) *+ X

P2 = GP2 = x1x2(x0x1) = X XXy + X,XpXy = X

Definition 3: (Criterion of Minimal TANT network)

We shall say that a TANT network producesa certain
given Boolean function f in a minimal form if no other
TANT clrcult exists which has less number of NAND declsion

elements.

Theorem 1:
According to the previous definition of minimal
TANT network, every P-term (28) of a minimal TANT form of

f 1s a generalized prime implicant.
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Proof: Suppose that the minimal TANT expression of f is

P. + P, + ... + P +,,.+P

17 Y2 1 r

where each term Pi is of the form (28). We shall prove
that‘Pi is formed by logical addition of any number of
ordinary prime implicants OP of f. To prove this state-
ment it is sufficient to prove that there is no minterm

mi of f such that

P, = I

1 OP

+ m, with m

] OP

J 73
Effectively, according to Definition 1 the general form
of Pi is Hl.(TlT2....Tk); on the other hand, since OPJ is

an ordlinary prime Iimplicant of f,

Zj OPj = H1 XyeoeXgeooeXns X4 ¢ H1 for
1,

i-= ., M m<n.

But Pi = Zj OPj + my s therefore, the minterm m,

have the same factor H1 of uncomplemented variables that

should
the terms OPJ and Pi' But my is a minterm and thus con-
tains all complemented variables which are not contained
in;Hl. These variables much be contained also in ZJ OP'j
because, i1f not contained, or my is not a minterm or its
H-factor of uncomplemented variables does not colncide

with H

implying that P, is not of the form (28). There-

1° i
fore, every term of a minimal TANT form is a generalized

prime implicant.
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, The question 1s now how to determline the set of
generalized prime implicants and, from this set, tb select
those that produce the function f according to Definition
3.

To form the set of generalized prime implicants we
start from the set of ordinary prime implicants of f, as.

proven by the following theorem.

Theorem 2
Let {OP} be the set of ordinary prime implicants

of £ and let {GP} be the set of generalized prime impli-

cants, then

(1) {oP} c {(GP}

(2) GP, =1

P OP, for OPie.{OP} ; GP, € {GP}.

1 J

i

The proof of these two propositions follows Iimmediately
from the definition of ordinary prime implicant of f and
from Definition 2.

Based on theorem 2, it 1s clear that the set of
ordinary prime implicants of f augmented with those P-terms,
of the form (28),obtained by logical addition of any number
of prime implicants OPi contained in {OP} constitutes the
set of P-terms from which it 1s possible to generate all
possible generalized prime implicants GPJ. This set of
P-terms thus formed is called the BASE of the given

function f. It will be denoted by B.
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Note that once the set of ordinary prime implicants
is obtained, only those with common H-factor wlll produce
'a new P-term of the base by logical addition. This is due
to fhe speclal form of the P-terms (28).-

Example 3: Consider the function of Figure 14

b xle
00 01 10 11
0 ® ®
1 o ®

Figure 14
TANT Synthesis Example

The set of ordinary prime implicants is
{oP} = {xoxl, XoX5 s XgX X, ¥

Since there are no terms OPj C {OP} with common H-factor,
the Base B of the function coincides with the set {OP}.
Thus

B = {xoxl, X5%5s xoxlxz}.
Example 4: Consider the function whose corresponding

Marquand map is X3 Xlxo
0

]
o

Q01 11
ole le|e
°

1
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The set {OP}is{xli2, xlio, §O§2L

In thls case there are two terms OP’j with common H-factor:
xliz and xlio. These two terms are combined by logical

addition producing the term xl(xzxo). The BASE 1s thus
B = {xX,, X3X55 XpXy, Xq(X5X )}

4.3.3 CALCULATION OF THE GENERALIZED PRIME IMPLICANTS

The generalized prime implicants of a given
Boolean function f are constructed inserting in all
possible ways the variébles contained in the H-factor of
each term of the base in its corresponding T-factors. The
GP terms thus obtained which are identically equal to zero

are disregarded.

Example 5: Consider the base B = {xoxl, XgX1X55 xoxzk.
From the term xoil we obtaln the term GP1 = (x )

From the term Xo¥%, no acceptable term is generated because
those obtained: XX 2(x ), XX 2(x2), XX 2(x x2) are ident-

ically equal to zero. From term xlioiz we obtain

GP2 = xl(xlxo)x2

GP3 = xlxo(xle)

GP) = xl(xlxo) (xle)

The generalized prime implicants are:
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GPl = xo(xlxo)

0

GP2 xl(xlxo)x2

GP

3 xl(x2x1)x0

(?rP‘4 = xl(xle) (xoxl)

plus the P-terms of the base

GP5 = xox1
GP6 = x0x1x2
GP7 = x0x2

This method of calculating the generalized prime
implicants is preferred when the synthesis is done
manually. However, the automatization by standard computer
programming of this method is laborious because 1t is
required to handle variable-length words and many shift
operations to insert the variables of the H-factor 1in the
T-factor. Also, the identification of H- and T-factors
belonging to the same P-term 1s not easy to implement. For
these reasons, and due to the fact that the Boolean
Analyzer is capable of solving large systems of Boolean
equations, we studied the possibility of transforming the
problem of generalized prime implicants generation to the

solution of a system of Boolean equations.
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Before describihg the set up of this system of

equations we need the following theorem.

Theorem 3
If a T-factor of a P-term belonging to the base B
of a given Boolean function f of n variables has m(m<n)
complemented variables, the GP-terms obtalned from this

P-term has m distinct TJ factors (j = 1, ..., m).

s r
Proof: Let the term OPl =Xy .o xi.xJ -« X, Where (r+s)

s , r
< n, xO,TTT,xi # xJ,TTTxk, and let

P = OPJ, PeB and OP, € {OP}.

J

Suppose that it is possible to generate from this P-term
a generalized prime implicant of the form

s Z

GP, = xoTTixi.id...ik(Tq) (29)

" According to Theorem 2, the factor Tq has to have the form

- . &=L - X _
= + +ot + o+
Tq (ax0 bx1 hxi ij Kx

(where a,b,...,h,A,...,K are logical variables), because,

k)

if it will not have this form, or P does not belong to

the base B, or GP, (29) is not a P-term of the form (28).
But, suppose that the term GP1(29) is accepted as a
generalized prime implicant of the minimal TANT expression,
then 16 is evident that the circuit thus obtained will use

an additional gate to synthesize Tq as compared with the
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circuit obtained by accepting the term P instead of GPl.
In the case that the factor Tq is available already in
the synthesized circuit because it may belong to a necessary
GPJ - term (J # 1), 1t 1s easily seen that it is also
preferred the term P instead of GPl because'by using P
an 1lnput at the decision element that realizes the term
GPl is saved. Therefore, the term GP1 (29) withm + 1
factors T does not introduce any gdditional information
in the synthesis process and thus is not considered as an
effective generalized prime implicant of f.

Theorem 3 gives the general form of the equation
to be solved to obtain the acceptable generalized prime

implicants. Effectively, given a term P1 of the base,
(r + s)%n

St

" — -
XgseessXy # xj,...,xk

every GP.j - term derived from Pi’ PieB, is a solution of

the eguation

& - % _ _
XO"'xi‘xj"‘xk = XO"'xi’(a1x0 + bix1
L—
+...4 hixn—l)"’(arxo + brx1+...+ hrxn—l) (30)
where aq,bq,...,hq forq = 1,2,...,r are logical variables.

The equation (30) may be considered as a system of

Boolean equations with the unknowns aq,b ...,hq (g=1,...r)

q. >
This equation may be written in the form Y = 0 as required
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for the Boolean Analyzer. The discriminant is obtained
using Mode II of the Boolean Analyzer which 1s used to
obtain all possible solutions of (30). The values of the
unknowns substituted in the right hand side of (30) give
the terms P which form the set of generalized prime

implicants originated by the term P of the base.

Exémgle 6: Consider the term P1 = The set of

X XpXy e
generalized prime implicants derived from this term was

already obtained in Example 5. The corresponding
equation (30) for Pl is:
X XXy = xp(a1Xy + biXy + eyXg)(ay%, + boXy

+ e%,) (31)

Let us form the discriminant of this equation; i.e., in

6 . 23 = 29 (6 unknowns and 3 constants)

the space of 2
let us determine the minterms for which equation (31) is
satisfied. This discriminant is shown in Figure 15.

The interesting solutions to our problem are
those which are invariant with respect to the values of
the constants x,, X;, X,; 1.e., those which satisfy (31)
no matter the values of the constants XosXysXye If the
discriminant is organized as we have done in Figure 15:
rows representing the space of unknowns and columns the

space of constants, the desired solutions may be read

directly from the discriminant, because each solution
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corresponds to every row containing only dots (a dot means
that for this minterm equation (31) will hold). The
solutions of (31) have been marked with an arrow in Figure

15 for easy identification, and are listed below:

Space of terms obtained by
identifier unknowns substitution in (5)
czbzagclbla1
12 001100 x(X4) (x,)
14 001110 x, (%p%7) (%,)
28 011100 x, (X)) (%x,xq)
30 011110 Xy (x5%1) (x5%q)
33 100001 xl(iz) (io)
35 100011 %y (X%5) (%)
49 110001 x1(%,) (x7%)
51 110011 xl(xoxl) (xoxz)

From this set of solutions we.eliminate those
that are repreated beéause the loglcal multiplication is
commutative. Thus, solution #12 is identical to solution
#33, #14 to #U49, #28 to #35 and #30 to #51. Finally we

obtalin the following generalized brime implicants
GP2 = xl(xlxo) Xy

GP3 = xlxo(xexl)
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GPu = xl(xoxl) (x2x1\

XX

GPg 0%2

X1
which coincide with those previously obtained. (We have
kept here the same subindices than on Example 5).

The method of generating the generallized prime
implicants through the solution of systems of Boolean
equations 1s very long if done manually. Note, for example,
that for functions with only 3 variables a logical space
of 9 variables is required. The method, however, 1s
completely general and is specially adapted to the Boolean
Analyzer. The general purpose computer (in our case the
Sigma 7 computer) will generate the terms of the base B,
and, for each term of this base, it will generate an
equation like (30) but in the form Y = 0. The terms of
Y will be inserted in the logical operation unit of the
Boolean Analyzer and the discriminant will be obtained in
the circulating memory (in our case a RAD Storage System).
Sigma 7 will read out this discriminant selecting those
identifiers from the space of unknowns which verify (30).
The solutions thus obtained are stored in the memory of
Sigma 7 and the system proceeds with the next term of the
base. At the end of this process, all generalized prime
implicants of f will be stored in Sigma 7.

In order to show the automatization nossibility

of the above described method, a program was derived for
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Sigma 7, called SBEV3 (Systems of Boolean Equationé Ver-
sion 3) which simulates the Boolean Analyzer in thils part-
icular application. The program SBEV3 was written in
FORTRAN IV language and for functionsf of three variables
only*. In Appendix II a list of the instructions of this
program and the output data obtained for the following

function f of three variables is gilven:#*#¥

X. X

<\ 0
2 00 01 10 11
0 ol e
1 o |0

¥ This function is taken from an example presented by

Gimpel in Reference 28.

A more general program is presented 1n Chapter 5.
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Generalized Prime Implicants
Terms of the Calculated GP
Base Terms
XaXa(X,%XA)
Number Expression 2707170
xgxo(xlxg)
1 KoXpXqesoeroonorscnones x2x0(x0xlx2)
2 K Xgeeoonosenseonscacens xl(xoxl)
3 xl(xox2)............... xl(xoxlx2)
b XqXpeernons Ceresereeene xl(x1x2)
Table V

GENERALIZED PRIME IMPLICANTS

To interpret properly the output data given by the program
SBEV3, the following terminology is used:
BASE TERM NUMBER = : refers to the ordering
number of the base.
LIST OF TERMS OF THE FUNCTION Y = 0 : refers to
the terms of Equation (30)
written in form Y = 0.
IDENTIFIER OF THE SOLUTION: refers to the ident-

ifier of the logical space
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of unknowns for which a

solution exists.

In our case, since there are 3 unknowns, this
logical space corresponds to the unknowns a,b,c, exclus-
ively and in correspondence with the constants X55Xq 5%
respectively.

Thus, for the first term of the base (see Table V)

x0x2§1, the program SBEV3 gives the following solutions:

identifiers a,b,c T-factor GP-term
2 010 Xy X2x0xl
3 011 (xlxo) xzxo(xlxo)
6 110 (xgxl) xzxo(xle)
7 111 (x2x1x0) : xgxo(xlexo)

For the second term of the base: xlib the solutions are

1 001 X X,Xq

0 1

3 011 (xlxo) xl(xlxo)

For the third term of the base: xl(x0x2) the solutions are
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identifier a,b,c T-factor GP-term
5 101 (xzxo) xl(xzxo)

7 111 (xlexo) xl(x2x1x0)

For the fourth term of the base: xlié the solutions are:

i 100 X5 XX,

6 110 (xle) xl(xle)

The prime implicants obtalned with the program

SBEV3 coincide with those of Table V.

4.3.4 THE SELECTION OF GENERALIZED PRIME IMPLICANTS

In order to obtain a minimal TANT synthesis of a
Boolean function f not all generalized prime implicants
are required. This 1s also the case of the AND-OR logic
of two levels. The problem is now to select those gener-
alized prime implicants which produce the function f acc-
ording to the criterion of minimality given in Definition
3.

In a TANT expression, and due to the fact that
there exists a third logical level, it 1s possible to use

the same elements of the third logical level 1n several
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inputs of elements of the other levels, and therefore the
selection of GP-terms consists of two problems:
(1) The selection of the minimum number of GP-
terms which cover the function.
(2) From all TANT expressions obtained
select those which use the least number of
NAND elements, 1.e. obtain maximum "sharing"

of T-factors.

The first problem is a classical one and has

been solved by McCluskey30

using tables or algebraically
by Petrick29 by means of a logical function Z which
expresses the condition of covering of the function f.

_ The second problem has been solved by Luccio and
Grassé1113l using a special table, called CC-table (Cover
and Closure Table) but in connection with the problem of
simplification of the number of internal states of a seg-~
uentlal circuit. In this section we propose a similar
method as the one using CC-tables but we differ in the
fact that our table is used to generate two special
Petrick functions that in combination solve the covering
problem.

In the following lines we describe systematically

our investigations in solving this covering problem.

We apply first the Petrick function to the example
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on Table V. For this purpose a table is constructed whose
columns represent the minterms of the function f and the
rows the generalized prime implicants. We enter a dot in
those places of the table where the generalized prime
implicant of a row covers a minterm of a column. This

table 1s the following:

X2X1XO X2X1XO x2xlxo X2X1XO

GP, = x2x0§1 o

GP, = X,%y(X;Xy) ®

GP, = xzxo(izfg) ®

GP) = x2x0(x2xlx0) ®

GPy = X1 Xq ® °
GPg = x;(x1%p) ° °
GP7 = xl(xzxo) PY P °
GPg = X, (x,%;%() ® ® ®
GP9 = xli—Z ® ®

GP1, = Xq(X5%]) ® ®

Table VI

COVERING OF MINTERMS
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If the proposition "All minterms of the function
are covered" is identified with the Boolean variable Z,
this variable may be expressed as a function of the GPi

(1 =1,...,10) terms as follows:

7 = (GP5 + GP6 + GP7 + GP8 + GP9 + GPlo) . (GP7 + GP8 +
GP9 + GPlO).
(GPl + GP2 + GP3 + GPM) : (GP5 + GP6 + GP7 + GP8) (32)

FEach term gives us a covering of f. Evidently those
terms of Z with the least numbe? of GP-~-terms will give the
most economical implementation. In other words, the ord-
inary prime implicants of Z are the irredundant coverings

of f. The expansion of (32) gives

= P . + e + . + . P +
A G 1 GP7 GP2 GP7 GP3 GP7 GPM G 7 GPl

* GPg + GP, ° Gpg + GP, - GPg + GP, - GPg (33)

2 3

where each term is already a prime implicant of Z.

Any term of (33) that we may choose for the TANT
eircuit has the same number of GP-terms. This selection,
however, does not suffice to obtaln a miniﬁum numbér of

gates implementation because it is possible to use an
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output of the third logical level (T-factor) as inputs to
several gates of the second level. The lnspection of
TABLE VI shows immediately that GPM and GP8 have the

same T-factor: (xoxlxg) and since GPM . GP8 is a term

of (33) these two GP-terms give a minimal TANT implementa-

tion of F¥. The corresponding circuit is given in Figure
16.

Xz 4‘.‘ Iz*xb'f’(bxlzz

%o —- |

X, - - X,

): ﬂ ?o -I'EH-“,, Di:fxf—(xoxlxt) +X ( ,x‘x‘)
*2

Z+X0X.x,_

Figure 16
TANT Circult Corresponding to Table V
The visual inspection of TABLE VI 1is not in gen-
eral that easy for problems of large numbers of variables,
and since we are interested in automatic methods of sel-

ection we lnvestigate the following two alternatives:
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(1) To construct another table based on a
function like (33)

(2) To add logical conditions to the Petrick
function to include the second selection
process.

Let us conslider both alternatives separately.

The First alternative consists of constructing another

table (TABLE VII) in which each row corresponds to each
term of the Petrick function previously obtained (33) and
with each column corresponding to every Tj factor of the
GP-terms contained in (33). If a dot is entered in those
places of the tables where a Tj—factor is present in a
GP-term, the answer to our selection problem is the row(s)
with the least number of dots. If several rows exist
with the least number of dots, all give a minimal solution
according to Definition 3. However, if the criterion of
minimum total number of inputs to the gates of the circuit
is considered, we will choose from the table those Tj
factors with the least number of literals.

To illustrate this process consider the previous
example and let us build a table (TABLE VII) in the way

indicated with the terms of (33).
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ol

1 (%) (X)) (pxXg)  (Xpx)
GPy . GP, o o
6P, . GP, ° | °
GP4 . GP, ) | | ®
GP, . GP, ° °
GP, . GPg ° .
GP, . GPg ° °
GP3 . GP8 | o @
6P, . GPg °

Table VII
T-FACTORS SELECTION
The row with the least number of points is the
last one whlch corresponds to the term GPu . GP8 as
expected.
Foliowing, we present another example of synthesils

of a function of U4 variables.

Example 7: Let f be taken as given by the map of Figure
17.
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00 01 10 11 The terms of the base
lg| e ° are :
01 {xo 2%X35 x1 55 x0x3x1,
3% 10| o | o Xg¥p¥3}
11 o ®
mxg...l Ay e s I ARG LR lm.g ST ETe § 5 g A i“{ P\ c:!' 6”)
Figure 17 ‘ S
Truth Table of Example 7
Generalized prime Minterms
implicants ,
/
% W 0 1 % 8 I 9 13 15
T Xo¥a¥3 | | 9| @ ‘
E %‘\‘:; y! oz ; g\ i L1
= xo(xgrEy e ERE
= xoxz(x3x0) ® ®
= X% ® °® o |0
= x0x3x1 ® o
= LSRN BRPRY i
" %o 3<x %o) oo
= XpXpXg o ®
3 §

The

corresponding Petrick function is:
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7 = GPM(GP1 + GP, + GP., + GPM) . (GP1 + GP

(GPu + GP5 + GP6 + GP7 + GP8) . (GP5 + GP6 + GP7 + GPB
+
GP9) . GP9
which is reduced to:
Z = GPM . GP9(GP1 + GP2 + GP3) = GPM GP9 GPl + GPu GP9
GP2 + GPU GP9 GP3.
The associated table to this funectlion is:
Xq X, x3 (xoxz) (x3xo)
minimal
GPy . GP9 . GP4 ® ® ® solution
GPu . GP9 . GP2 Py ° P
minimal
GPy . GPQ . GP3 | ©® o solution

There exist two solutions with the same number of NAND

elements:

f =GP, + GP, + GP XX + X X X, + X

9 1 1% 0X2%3 0Xo%3 (34)

f

GPu + GP9 + GP3 = Xy%, + X0 XoXg + x0x2(x3x0)
In Figures 18 and 19 we show the TANT circuits realizing
forms (34) and (35).
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Figure 18

TANT Cilrcuit Corresponding to Example 7,
First Solution.

T
DD__.

Figure 19

TANT Circuit Corresponding to FExample T,
Second Solution.
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The Second alternative in the selection of GP-terms is to

add to the Petrick function Z (19) a set of logical cond-
itions (equations) that together with Z give the solution
of the problem.

If we expand the original Table V from which Z
- (33) was derived by adding new entries each one corres-
ponding to a Tj—factor belonging to every GP-term and if
it is marked with a dot those places of the expanded-
side when the Tj—factor belongs to a certain GP-term
(as was done in TABLE VII), new equations may be generated
that together with Z express the logical conditions for
minimal covering.

This process was illustrated in the previous
example. The extended table of GP-terms with the Tj—fac—

tors is given in TABLE VIII.
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From the columns of minterms one deduces the Petrick
function Z which is the same as (33) and by using the
columns of Tj—factors one obtains the logical equations
which express logically that the indicated Tj—factors
belong to the corresponding GP-terms. The TJ—factors are

named here with the letter Q (see TABLE VIII). Thus the

set of equations obtained is:

Z = GP, GP9 GP, + GP) GP9 GP, + GP, GP9 GP3 - (33)
GPy = Q, . Q3 GPS = Q
GP3 =Q, . QS GP, = Q,

If (36) is substituted in (33), the result obtained is:

The first and the last terms contain the same least number
of variables and, therefore, are the solutions of the

covering problem. Thus,

f= GPH + GP9 + GPl f = GPM + GP9 + GP3

which coincide with (34) and (35) previously obtained.
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From the point of view of autométion, the second
alternative seems to be more convenient because once the
ordinary prime implicants of Z are obtained it suffices
to do the above mentioned substitution (i.e. Equations
(36) in (32)) and this process may be done easily in the
general purpose computer (Sigma 7).

If Figure 20 we show a schematic flow chart of
the automated proposed process of TANT synthesls as

carried out by the system Sigma 7 - Boolean Analyzer.
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4,4 A General Synthesis Method of Logical Nets using fixed

inventory of integrated circult modules

4.4,1 Synthesis of Single Output Logical Nets

4.4,1,1 Introduction

The synthesis of combinational or switching circuits
is a major task in digital computer design. Somewhere along
the design process a set of Boolean (1ogical) equations are
stated by the designer which describe the properties of the
digital system. The designer 1s then faced with the task of
implementing this set of equations using,in general, a res-
tricted inventory of integrated circuits which constitute
the basis bullding blocks. The structure of this inventory
lmposes restrictions on the use of the commonly known AND-OR
two-level logical circult deslgn techniques, such as Quine-
McCluskey,etc., because if followed, the synthesis thus ob-
talned is not necessarlily the optimum with respect to the
particular inventory. A question, therefore arises how to
proceed or what general method should be followed to obtain
a given Boolean Functlon by using any general bullding blod
and what are the conditions under which this task 1is possi-
ble wifh the given particular inventory?

First, the inventory should be adequate. This means
that the set of avalble integrated circuits should be such
that any given Boolean Function can be synthesized. It has
been proven that inventorles having only NAND gates32, or

32

only NOR gates~ , or as recently proven by Patt 33 invento-
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ries having only a fixed macro module (for instance,one cal-
led WOS ), are sufficient to synthesize any Boolean Func-

tion. In this section we shall only~consider inventories pf
integrated circuits with only one type of logical elements,

Second, the synthesis algorithm to be followed should
be independent of the complexity or simplicity of the used
inventory.In other words, the synthesls method should be
applicable with no modification to any given type of inven-
tory. This requirement will glve maxlmum generality to the
synthesis algorithm. »

Third, the number of steps of the algorithm should be
finite and a certain criterion of "optimum" should be follo-
wed at the different steps to satisfy the specific designers
constraints. This criterion should not affect the synthesis
algorithm but rather the existing function of the invento-
ry. Here an interaction with the synthesis procedure by the
desligner 1s desirable,

In this section we introduce a general algorithm which
satisfies the requirements mentlioned above and produces an
adequate implementation of a logical net provided the desi-
gner establishes an "adequate" set of design criteria. Thus
we may say that an acceptable synthesis 1s obtained depen-
ding upon the design criteria. imposed on the existing inven
tory functions and upon the completeness of this inventory.

The syntheslis method used here 1s based on Svobodats

Algorithm for Solving Boolean Equations (Section 1.1.3).
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Every level of the loglcal net is synthesized by solving a
system of Boolean Equations and by choosing (according to
the designer's criteria) the acceptable solutions. This me-
thod can be partly or totally mechanized on a digltal com-
puter. Its implementation using the Boolean Analyser 1s of

particular interest as we shall see,.

4,4,1,2 The Synthesis Algorithm,
Supﬁose that a certain Boolean function f has
to be implemented with a certaln bullding block or integra-
ted circuit module which produces a logical function F ,
The problem is to find the internal structure of
the "black box" of Figure 21 which assume contains no me-

mory devlices,

5 ——— Logical f

R Net

Figure 21
Combinational Logic Net.

Since the logical net (Figure 21) contains only
one kind of modules, it is clear that the output f has to
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be also the output of a module*,

Therefore the "black box" of Figure 21 must have the

structure shown in Figure 22,

)ﬂ________,
)
M o o o o)
2 Fa
= el #
: | F HE—
. Fm
Xn___._....__—
Figure 22.

Combinational Loglc Net,
Showing Last Logic Level.

and thus the following Boolean relation exists

f=F (36)
We observe that F 1s a gilven function of the m finite

number of inputs Fl, F2’ coes Fm of the given module and

that f 1s a given function of the n input logical vari-

ables X, Xys eees X o Thus Equation (36) has the form

£y, Xpseees X )=F(F, oooy Fr) o (37)

The problem now consists of solving the Boolean equation

(37) for Fiy, Fos eees Fm as functions of X1s Xpseees Xp to

- * We do not consider here the case where f degenera-

tes in one of the input variables. Thils 1s a trivial synthe-
sis problem because no module is required.
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determine the input functions to the last module of the logl-
cal net, These input functions Fi are then considered as
output functions of other modules F (Figure 22) whose in-
puts are determined by the same process. The synthesls pro-
cedure ends when the input functions to the modules at a
particular stage become equal to any of the input logilcal
variables X15 Xp5 «ees Xn, its complements, if these are
available, or fixed logical levels , "o", "i" ,

In general, the solution of equation (37) is not uni-
que and, therefore, a criterium 1s required to reduce the
total number of existing solutions to adequate ones,

The determlnation of this criterium is left to the
experience and specific requirements of the designer. For
example, suppose that the designer would like to have a lo
gical net with minimum number of loglcal stages meaning op-
timum delay. In this case he may 1instruct the machine to se-
lect those solutions of (37) which are :

(1) fixed logical levels : logical "1" or logical "0*

(2) 1input variables

(3) function directly produces by the module being

used,

In the followling applications we shall consider this
criterium,

We should mention here that the chosen criterium of optimum

does not affect the basic steps of the synthesis algoritm

This characteristic enables the easy experimentation with
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different criteria of optimality, because these affects ex-

clusively the exlisting functions of the inventory.

4.,4,1.3 Synthesis of Logical Nets Using NAND Logic

To i1llustrate the synthesis algorithm described in
the pfevious section, a particular application to NAND lo-
gical nets is presented here. We assume that both true and
complement varliables are available. |

The inventory 1s composed, for example, of all fung
tions produced by three-input-NAND-gates. If we use the cri-
terium of minimum number of gates in the circuit, the ac-
ceptable solutions of equation (37) will be one of the fol-
lowing three categories':

(1) functions implemented by a single 3-input-

NAND-gate

(2) 4input variables (complemented and uncomple-

mented)

(3) fixed logical levels : logical "O" or

logical "1" .

In order to conveniently evaluate every possible

solution, we first catalog the inventory functions accor-

ding to an identifier, and second we assign a weighting fac-

tor %o each input-function F1 according to its category.
The identifier of each function F, 1s obtained

by computing the decimal equivalent of the binary string re-

presenting the truth values of the corresponding function,
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For example, the identifier of function

f = NAND (xl

is equal to 119, Effectively,

,XQ) =5fl + 552

128 64 32 16 8 4 2 1
x3: 1 1 1 1 0000
X5 8 1 1 o0 0 1 1 0 o0
Xq ¢ l O0 1 0 1 0 1 o0
Truth values £ : (0 1 1 1 0 1 1 1),=(119)5.

Similarly, the identifiler corresponding to

f = NAND (xl, Xy, x3)

is 127.

The functions of the inventory cataloged accor-

ding to its ID number are given in the following table :
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TABLE IX NAND FUNCTIONS OF 3. INPUTS

Identifier | function: f inputs: jNAND
1 2 3
0 0 directly available
15 E3 directly available
51 22 directly available
63 §é + §3 Xy X3 1
85 Xy directly available
95 El §3 X, %3 1
119 ;l §2 X; X 1
127 Xp + X, + 23 X; X, X
170 Xq directly available
175 Xq §3 Xy Xy 1
187 X, * X, X X, 1
191 Xy + X, ¥ §3 X; X, X
204 X directly available
207 §3 Xy X3 x, 1
221 X; *+ X, X; X, 1
223 Il X, + §3 Xy Eé X4
240 X3 directly available
243 X, Xq X, §3 1
245 ;1 X3 Xq ;('3 1
247 X) *x, * X3 X] X, IS
248 X, + X, X, X, 1
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TABLE IX CONTINUES

Identifier function: f inputs:
1 2 3

249 X, + x5+ f3 El 52 Xo

250 X) * Xg fl §3 1

251 xqy * X, + X3 21 X, 23

252 X, * Xq ié §3

253 X, X, + X5 X, X, 553

254 Xy + X, + xg Il §2 23

255 1 diréctly available
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The asslignement of welghtling factors to each function
Fi 1s done using the followlng convention : Assume that
the module being used has m 1inputs,
- If function F4; 1s a. constant logical level, then
welght-factor =0
If function F,; 1s an input variable in true ( or
complement form, when available ), then weight-
factof =1
If function F1 is a function directely obtainable
with a single m-input-NAND-element, then welight
factor = (m +1).
For example, the function f:i'2+:—c3 'il may be imple-

mented with the following clrcult
Zaeh

where F., F2, F3 (input functions to the last logical le-
vel) have weight-factors 1, 4, O respectively.

Since each set of 1nput functioné Fy 1s a possible
solution of Equation (37), we may associate to each solu-

tion a welght factor which is the sum of the weights asso-

ciate to its corresponding input function Fi . Thus the
welight associated to the solution : 1F1= X5, Fy= x34-x1,
F3= 1l in the previous example 1s 1+4+0 =5 ,

This solution-weight 1s useful to determine which of the

possible solutions 1is more acceptable. Effectively, the so-
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lution with lowest weight will be optimum aqcording to the

above mentioned criterium.

With the help of the identifiers of the functlons con-

tained in the inventory and the weight assocliated to each

possible solution, the synthesis algorithm proper is easily

exxcuted in the following steps :

lst Step

2nd Step :

3rd Step @

4th Step :

Solve Egqn. (37) and compute the total num-

ber of existing solutions. Here the B.A.
operating in MODE II may be used to com-
pute the discriminant of Eqn. (37).

If the total number of existinghsolutions
is not equal to zero, then compute the lst
solution and its identifiler. If it 1s equal
to zero, PRINT message ' no solutlion' and
STOP.

If the identifier computed in Step 2 1is
contained in the inventory, then compute
solution-welght and print : Solution num-
ber, identifier of the solution, solutlon-
weight and truth tables of correspondiné
input functions. ‘

Is the solution considered 1n Step 3 the
last one? If yes, STOP, If no, consider
next solution as first solution and repeat

Steps 2 to 4 ,

In the cases where only solutions with lowest welight are in-
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teresting, the printing part of Step 3 is suppressed and
sﬁbstituted by a checking process which will store in an
array named LIST the solutions with lowest weight. This op-
tion 1s specifled by means of a data card to the computer
program implementing the above algorithmic steps.

The following flowchart displays the steps of the
synthesis algorithm.

S
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A computer program, called SBEV4 (Appendix III) imple-
menting the above flowchart has been written by generaliza-
tion of the SBEV3 program fof solving Boolean equations
(Appendix II) and in such a way that when the inventory of
functions 1is empty the program computes all existing solu-
tions of the system of Boolean equatlions. However, when in-
ventory functions are part of the input data (designer's
constraints) then the program generates the acceptable so-
lutions, and, if so specified, will print out only those
solutions with lowest weight. To 1llustrate the synthesis
algorithm, consider the following example.

Example : Synthesize with 3-input-NAND-gates the funo-

tion
f =% X + ié .

The general form of the output function of a 3-input-

NAND-gate is
F= Fii—Fé*-Fé

therefore we solve the Boolean equation

1 72" 73
as functions of x1 s X5 x3.

Xy X+ X, = F+F,+F3 (38)
for Fy, Fp, Fy
Following Svoboda's algorithm (Section 1.1.3) we obtain the

discriminant :
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y\O0 1 2 3 4 5 6 7T x =20 x1+21x2+22x3
ofr 11 1 0 0 0 1f y=20F +olr+a®r,
1/1 111 0 0 0 1
211 111 0 0 0 1
31 1110 0 0.1
411 11 1 0 0 0 1
51 111 0 0 0 1
611 1 11 0 0 0 1
710 o 0o 01 1 1 0
Te TxTwe TelxlxlxT7 = 16807 solutions.

The total number of possible solutions is 16807. The

acceptable ones are those with functions Fl’ F F3 con-

o2
tained in Table IX ( functions of the inventory),.
In Appendix III we show the output given by the SBEV4
computer program corresponding to solutions with the lowest
weight found equal to 5,
To verlify the completeness of the synthesiskmethod, let
us show that the following solution (Fig. 23) which has 5eel

derived manually using standard techniques 38 is included

in the set of solutions obtained by the SBEV4 program,

% f
e — =

Figure 23 . NAND Synthesis Example.
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Effectively, the set of input functions to the last
logical level ( Pig.23) 1is :

F1= x3
F3:= 1

The corresponding truth tables of these functions are

x3x2\xl 0 1 o 1 0 1
0 00 ]O 111 1] 1

0O 1j01]0 1]0 111

1 o111 111 11

1 1§11}1 110 111

Fy F, | Fs

which are also obtained by the selection of the encircled
non-zero elements (Fig.24) in the discriminant of Eqn. (38).

"No 12 345 6 7 x = 20x1+-21x2*'22x3
o1 1 110 0 0 1 y = 20F1+21F2+22F3»
11 1 11 0 0 0 1
2l1 1 11 0 0 0 1
3] 111 0 0 0 1
4fr 1 1 1 0 0 0 1
511110000 Figure 24
6D OO 1 0 0 0 1 Discriminant of Eqn. (38)
710 0 0 0 @@ @ o




Looking at TABLE IX we find that functions Fl’ Fr, F3
given in (39) have 1dentifiers 240, 119 and 255 respective-
ly. This solution corresponds to solution number T

given by SBEV4 (Appendix III ).

4.,4,1,4 Synthesis of Logical Nets Using WOS-Modules

In a recent paper, Patt33proposes a new building
block for the implementation of logical nets. This module
is called WOS-module (well-organized sequence-module) and
is proven to be universal,i.e., any Boolean functlion may
be generatgd by a circult containing only WOS-modules,

Patt also develops a synthesls method for this particular
logic and shows that more economical circults are obtailned
than with NAND logic elements.

In this section we shall 1llustrate our synthesis
method as it applies to this particular case. The first step
is %o build the proper inventory functions, We shall as-
sume that only true varlables are avallable and that cir-
cuits with minimum number of modules are desired. This con-
straint will define the functions of the inventory.

A 3-input WOS-module 1is a logical circuit which

performs the following Boolean function f

*1
X, wos f=X1X3X2 + X1X3X5 + X3X3
x3
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The module 1is agmmetric meaning that a permutation of
the input varilables causes a different output function.

The inventory of availlable functions 1is composed of:
(1) functions generated by a single WOS-module, (2) only
true input variables, (3) fixed logical levels.

The identifiers corresponding to these functions are
o, 3, 5, 10, 12, 15, 17, 34, 45, 48, 51, 57, 60, 63, 68, 75
80, 85, 89, 90, 95, 99, 101, 102, 119, 153, 165, 170, 175,
187, 195, 204, 207, 221, 240, 243, 245, 255, (TABLE X).
Note that there are 38 available functions in this inven-
tory instead of 28(TABLE IX) which was the case using NAND
logic (Section 4.4.,1.3). This means that we have enlarged
by 10 the number of acceptable functions and thus we may
expect differences in the circults obtained with 3-input
WOS -modules when compared with those obtained using 3-input
NAND elements., Thls difference has already been shown by

Patt in reference 33.
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TABLE X C)-‘r——-
@+ WOS|—»
WOS FUNCTIONS OF 3-INPUTS o
Identifler Functlion Input configuration Algebraic
= 1 ‘5 3 equation
0 empty 0
3 0,1 Xy Xy X 5352
X, X3 X3
5 0,2 x3 Xq Xq x3xl
Xq X3 Xq
10 1,3 X, %3 1 X1E3
12 2,3 Xy  Xg 1 x2§3
15 0,1,2,3 1 1 Xg §3
1 x3 1
X3 1 1
x3 1 x3
0 x3 x3
Xg Xq X3
17 0,u Xy Xy Xq iéfl
Xy X, Xy
3L 1,5 R xlié
b5 1,3,4,6 Xy Xy Xg x1§3x2+xl
& x3x2+x1x3
48 4,5 X3 X5 1 x3§2
51 0,1,4,5 X, 1 X §2
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TABLE X CONTINUES
identifler Function Input configuration Algebraic
1 5 3 equation
0 Xy Xy
2 *2 %o
57 0,3,4,5 X, X3 X xliéx3+xlx2
'£3+3<'1§2
60 2,3,4,5 1 %, g §3x2+x3x2
63 0,1,2,3, Xy X3 X, §3+§2
4,5 x3 X, x3
68 2,6 Xy Xy 1 ngl
75 0,1,3,6 Xy Xy X3 x2§3x1+
x2x3§1+22§3
80 b,6 X3 Xy 1 x3§l
85 0,2,4,6 0 0 X1 il
Xq 0 0
0 1 Xq
Xy %Xy X
89 0,3,4,6 X, Xy o X §2§1+x2§lx3
+x2xl§3
90 1,3,4,6 1 X3 Xy x1§3+§ix3
95 0,1,2,3,4,6] x4 X3 Xy xl§3+§i
99 0,1,5,6 Xa Xy X, §3§2§lfx3x2
x1+x3x2
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TABLE X CONTINUES

Identifier Function Input configuration Algebraic
equation
1 2 3
101 0,2,5,6 X3 X5 Xq x3xl+x3xlx2
+x3x1x2
102 1,2,5,6 1 Xq %o x1x2+x2x1
119 0,1,2,4,5,] x; x5, Xq xl§é+§1
6 X, Xq Xy
153 0,3,4,7 p 4 0 X —_——
_ 1 2 x1x2+x1x2
165 0,2,5,7 Xl 0 X3 X1X3+X1X3
170 1,3,5,7 not required Xq
1758 0,1,2,3, x3 Xy 0 x3xl+x3
5,7
187 0,1,3,4, X, Xy 0 X,Xq+X,
5,7’
195 0,1,6,7 X3 0 X, x3x2+x3x2
204 2,3,6,7 not required X5
207 0,1,2,3, x3 X5 0 x3x2+x3
6,7
221 0,2,3,4, | x;, x, 0 X X +%g
6,7
240 h,5,6,7 not required X3
243 0,1,4,5, Xy Xq 0 x3+x2
6,7
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TABLE X CONTINUES

Identifier Function Input configuration Algebraic
equation
1 2 3
245 0.2.4.5, Xq X3 0 xl+x3
6,7
255 0,1,2,3, not required 1
4,5,6,7
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As an illustrative example, let us syntheslze the
function

f‘:—xl fe‘f'xl J—(-3 .

Since the synthesis method 1s identical to the one
used in the previous section, we only show here the results
of the computer run (AppendixIII).The lowest solution
weight found was 8 and three acceptable solutions were ob-

tained :

221 2u5

———— o

64y
10__Jwos| __ £ 34 |[wos| _f; 85 |wos|

—— ———

0 : O— 255

These three solutions represent the followlng three

circuits (see TABLE X)

Xp{ Wos

wos| 1

Wos

wos[— ) Xq

Xo>—1wos | X3 Wos
0 — 0 —
¥

=1 —
e
||
=

X3 — X2-4wos Wos

1l 1 xq

0 0 1
Figure 25

WOS Synthesis Example.
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The circuits of Figure 25 contain two logic levels
only. The circuilt proposed by Patt in reference 34 is the
following

x3—WOS| X WOS[™ XpX3 | WOS| x3(Xp+ X3)

which contains three logic levels.

4. 4,2 Synthesis of Multiple-Output Logical Nets

A natural extension of the synthesis algorithm pre-
sented in Section 4.4.,1 is its application to multiple-out-
put combinational logic nets.

The multiple-output lmplementation problem 1s usual-
ly connected with some optimization requirement. Minimiza-
tions are stated as a goal for minimum number of characters
30, 39, 35 30, 39, 40, 35

minimum number of logic elements,
minimum number of external pins to the circuit, minimum
stages, optimum fan-in, fan-out, etc. The optimization
is in close relation with the means of solution in all
cases cited above. In our case the means of solution is the
BA and a maximum sharing of modules principle 1s introdu-
ced here.

In this section we outline a method for solving the
multiple-output synthesis problem using the Boolean Analy-

zer, This method 1is based on the frequency vy of occuren-

ce of each input function F1 when solving a system of

109



Boolean equations.

A multiple-output combinational network has the ge-

neral structure of Figure 26,

f 4
X‘ »> ¢ &
I T
* ’ ] |
omc— P
)‘3______.‘ e 83w ob  emmmmenend ‘
—_ R L
Fn :
- fr
Ky st - — . g
Figure 26

Multiple-Output Combinational Net.
Suppose that the inventory of avallable modules is

restricted to one type, as in the case considered in Sec-
tions 4.4.1.4 and 4.4.1.5. The problem of finding the mul-
tiple-output circuit with the maximum sharing of modules
may be solved in the following way :

Step 1 : For every output function fJ (3=1,2,...p)

we solve the equation
£y (%)s%psenssdy )= F (F1,Fp, «...Fy) (40)
where % 1is the function realized by the module of the in-

ventory, and Fl’Fz""’Fm the unknown variables,
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Step 2 : For every functlon fJ the set SJ ( 3=
1,2,...,p) of solutionsof Eqn. (40) with lowest weight 1s
computed. (Steps 1 and 2 constitute the algorithm for the
single-output case considered in Section 4. 4,1,2).

Step 3 : Every possible combination S={S3,S5,...,
SJ,...,Sp} of the solutions obtained in Step 2 is conside-
red and a weight factor W 1s computed taking in conslidera-
tion the frequency vy of occurence of every input func-
tion F; (1=1,2,...,m) in S and the weight-factor

assign to every function Fy :

p m
W= S [Z vy wi_} . (41)
J=1 i=1

J
Step 4 : A combination S wilth largest weight-fac-

tor W represents an implementatlon with maximum sharing
of modules,

To illustrate the above described synthesls process
following is an example of multiple-output WOS-circuilts
synthesis.

Example : Syntheslize the following functions

fl-: xl x2+ Xq x3

T

fa

111

Xl XQ X3

using maximum sharing of modules and assumlng the inventory
functions corresponding to WOS-modules of TABLE X,

Steps 1 and 2 : We solve the equation
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X, %o ¥ X X3 = F1F3F2+ F1F3F2-I- Fq 3

using the SBEVY4 program of Appendix III ., Three solutions
were found with weight equal to 8 :

221 | 2us5 63

10 WOS fl; 34 WOS fl; 85 WOS f

0o 0 — 255 ~——

Similarly, we solve equation

Three solutions with lowest weight (in this case equal to 5)

were found:

240 ] 204 3 170 4
119 WOS f2; 95 WOS f2; 63 wWOoS fo
255 — 255 — 255 —

Step 3 : We consider now all possible combinations

of solutions obtained in Step 2 . We assume here that welght
factors «w) are assigned to input functions F; following

the criterium used in Section 4.4,1.3,
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Nine combinations of solutions are possible,

fl fo weight&factor
Combination | F3 F, Fj F, F, Fj3 Eqn. (41)
1 221 10 0 240 119 255 13
2 221 10 0 204 95 225 13
3 221 10 0 170 63 255 13
4 245 34 0 240 119 255 13
5 245 34 0 204 95 255 13
6 245 3t 0 170 63 255 13
7 63 .85 255 240 119 255 13
8 63 85 255 20k 95 255 13
9 63 85 255 170 63 255 2l
TABLE XTI

MAXIMUM-SHARING COMPUTATION
and for each one of them a weight factor W 1s computed

according to Eqn. (40) (see TABLE XI),

Step 4 : A circuit with maximum sharing of modu-
les is obtained by choosing the comblinations of solutions
with 1argesf weight-factor W ., In this case there 1is only
one combination with W = 21 (TABLE XI), This combination

corresponds to the following circuit
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wos

I Wos

Xy ¥y 4 Xg

Xs wos ,
% 1.
X, Wos
i ® @

Figure 27. Multiple-Output WOS-Synthesls Example.
The automatization of the above multiple-output syn-
thesis procedure can be done using the Boolean Analyser.
For Steps 1 and 2 the same method as the one used in the
single-output case may be used. The Boolean Analyzer compu-
tes the discriminant of the systems of Boolean equations to
be solved. For steps 3 and 4 additional programming should
be done to compute the weight factors W of each possible
solution combination. A further development of the BA sys-
tem including a multiple-access RAD storage system could
assist in the efficient solution of this part of the problen
which looks rather lengthy for problemswlth large num-

ber of variables.
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CHAPTER V
COMPUTER SIMULATION OF THE B,A.SYSTEM

In Chapter III the hardware structure of the Boolean
Analyzer system was presented and in Chaptér IV some appli-
cations were investigated. At the present timé the BA is
not constructed so that it is not possible to profit from
its parallel processing capabilities when used in a parti-
cular application. However,it 1s possible to simulate the
basic modes of operation of the BA by means of computer pro-
gramming and thus obtaln a working software package which
could be used in the applications presented in the previous
chapter. The principal characteristic of the BA unit,namely

its parallel processing, cannot be obtained with computer

programs executed in sequential machines and therefore our
B.A. simulator will require far more computer-time than the
BA hardware unit,

The purpose of this chapter is to present a working

BA simulator and to show experimental results.

5.1 Simulation of the modes of operation of the BA

The BA Simulator (BAS) (Appendix IV) consists of a
FORTRAN IV program and three subprograms wrltten in SDS
SIGMA 7 Assambly Language.

The FORTRAN IV program is composed of the following
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parts:
1) A main program
2) Five Subroutines:

Subroutine BASE computes the base three equi-
valent of a decimal integer number,

Subroutine BINARY computes the base two equi-
.valent of a decimal integer number.

Subroutine TRACK reads in or writes on RAD a
bit corresponding to a cancellation process follo-
wing the description of Section 3.3. This subrou-
tine uses two special functions, IOR and IAND¥,
which are programed in assembly language.

Subroutine DISCRI retrleves bit-by-bit from
RAD the discriminant of a given system of equations
or if desired,may be used to retrieve the bits of
a given function.This subroutine uées an assembly
language subprogram called BIN** to directely ad-
dress and retrieve a bit of a word in RAD,

Subroutine MASK determines the cancellation
of the 1implicants of a certain prime-implicant.
This subroutine 1s a direct lmplementation of Theo-

rem 3, Section 3.1.

#Thegse functions were programed by Jean L. Baer.
##This subroutine was programed with the colaboration
of Patricia Rubins.
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The different subsystems of the BA hardware unit,as presen
ted in Section 3.2, have been simulated reflecting the hard-
ware limitations of the proposed model. Thus, the Loglc Ope-
ration Unit (Lou) is simulated by an array named LOU with a
working dimension of I00x22 (i.e. I00 registers allocating
a maxlimum of IOO Boolean terms of up to a maximum of 22 va-
riables) and the circulating memory,RAD,is simulated by an
array named RAD of dimension IO000. These dimensions may be
extended up to the limit allowed by the memory size of the
machine in use. In our case a SDS Sigma 7 computer was cho-
sen to run the simulation programs because it 1s the gene-
ral purpose computer proposed to work in conjunction with

the BA hardware unit (Fig. 7).

5.I.I Simulation of MODE 1

The flowchart corresponding to MODE I was pre-
sented in Figure 9,Section 3.3.I and its corresponding
FORTRAN IV program is shown in Apendix IV,

The interesting part of this program correspon-
ding to the implementation of the NON-IMPLICANT CANCELLATIMN
Theorem (Theorem I, Section 3.I) is the following:

Nl= 3%*N

DO 110 I=1,N1
L=I-1
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CALL BASE (L,TC)
DO 108 K =1,NT
DO 104 1,22
TEMP LOU(XK,J) TC(J)
IF(TEMP.EQ.3) GOTO 108
104 CONTINUE
R=1
L=I-1
CALL TRACK (L,A,R)
GOTO 110
108 CONTINUE
110 CONTINUE

where every term of Y=0 allocated in array LOU 1is compared
with the content of the triadic counter, TC, by addition of'
corresponding digits. If no addition equals to three for e-
very term of LOU (i.e. for every term of ¥Y=0 ),then the ar-
gument R 1s set to 1 and is entered in Subroutine TRACK
which writes a 1 in the corresponding bit position of a word
in array RAD.( This writing operation corresponds to a CAN-
CELLATION, See TABLE II), If an addition equals to three,
then the next term in array LOU is considered. If all terms

in LOU produce at least one addition digit equal to three,

then the content of bit position I in array RAD (I equals

qg
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to the decimal equivalent L of TC plus one) is 1éft equal
to zero.

The above procedure 1is repeated for the N1=3**N pos-
sible contents of the triadic counter TC.

If more than 100 terms should be processed(this 1is
the case when Y =0 contains more than 100 terms) then the a-
bove described procedure 1is carried through for every set
of 100 terms leaving,naturally,the array RAD unchanged at
the end of every 100-terms-processing operation. Thls can
be done because the cancellation operation is Boolean addi-
tive, '

The simulation of MODE f in binary operatlion l1ls done
by an almost alike part of program as used for trladic ope-
ration, the only difference being that N1=2%**(NiM) (N,M are
the number known and unknown variables respectively) and
that the triadic counter 1is replaced by the binary counter
(Subroutine BINARY).

In both binary and trladic operation of MODE I the
string of bits of array RAD represents the space T of im-

c
plicants(TABLE II).

5.1.2 Simulation of MODE II

The flowchart corresponding to the algorithmic
steps of MODE II was presented in Figure 10,Section 3.3.2.
The FORTRAN IV program contalning the simuiation of this mo-
de of operation of the BA 1s presented in Appendix IV.
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The partial program implementing this mode of opera-
tion is the following :

113 K=1
DO 114 K3s,22
TC(K3)=0
114 LOU(K,K3)}2
K=0
I=1
115 R=0
L=I-1
CALL MASK (A,K)
IF(A.NE.O) GOTO 128
120 L=I-1
CALL BASE (L)
121 K=K+1
DO 122 J=1,22
122 LOU(K,J)=Tc(J)
L=
CALL BASE (L)
CALL MASK (A,K)
124 I=I+1
128 IF(A) 129,130,129
129 I<I+1
L=I-1
CALL BASE (L)
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130 IF(I.GT.N1) GOTO 115
145 WRITE (6,1006)

which basicly represents the implementation of Theorems 2&
3 (Section 3.1) as follows:

The bits of array RAD are orderly read out (argument
R O is used for the reading operation in Subroutine TRACK)
according to their identifier I . The first non-zero bit of
RAD encountered corresponds to a prime implicant (Theorem 2
Section 3.1). The triadic equivalent(content of TC) of its
identifier L (L=I-1) is stored in LOU. At this stage I is
step up by one unit and‘Subroutine BASE 1is célled to compute
the triadic equivalent of L=I-1, The content of TC 1s now
compared diglit-by~digit with all the terms in LOU which ha-
ve been selected already as prime implicants.(This is the
task of Subroutine MASK which is a direct implementation of
Theorem 3,Section 3.1). If the out coming parameter A from
Subroutine MASK equals to zero, then the term TC under con-
sideration is a prime implicant if the corresponding bit
in RAD is also a zero(meaning that TC is an implicant of the
given function y ?). Only under these conditions the con-
tent of TC 1s considered as a new primr implicant and stored
in the corresponding address K of LOU, The above procedure
continues until the identifier I exeeds N1=3**N(N being
the number of variables of the given function). For problems

with higher number of prime implicants than the capacity
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of array LOU the following procedure is used : At the mo-
‘ment the last prime implicant has completed the array LOU

a cancellation of all implicants of the terms in LOU takes
place in RAD, After this cancellation has been completed
the terms in LOU are stored on magnetic tape or disc and
the procedure (Mode II operation) starts again with I equal
to the identifier corresponding to the last prime 1mplicant
obtained. When Ie3**N the set of prime lmplicants are re;

trieved from tape or disc.

5.2 Experlimental results

The BAS was used in two different experiments:
1) in the determination of the discriminant of large sys-
tems of Boolean equations,and 2) in the determination of
prime implicants of functions with large number of varia;
bles.

The obJective of these experiments was to obtain
BAS execution time measurements and to compare them with the
estimated performance of the BA hardware unit18. The results
of the experimental runs are reported in Figures 28 and 29.

In figure 28 the computation time in the discri-
minant determination versus the number of input terms of the
given equation ¥=0 1s plotted. Functions of 5,10 and 15 va-
riables were tested. Similarly, Figure 29 reports the res-
ults obtained in the determination of prime implicants,
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Functions of 5 and 10 varlables were tested containing
up to 150 terms each.

From the data presented in Figures 28 and 29 a rough
comparison with the BA hardware unit estimated performance
may be obtained in the following way :

Assume ¥=0 with n=10 variables and 120 terms,

1) Discriminant determination :

Estimated execution time of BA hardware unit18:
.005 seconds
Execution time of BA simulator :

108 seconds

Ratio : 21 x 103

2) Prime-implicant determination :
Estimated execution time of BA hardware unitl
.06 seconds
Execution time of BA simulator :

900 seconds

Ratilo : 3
15 x 10-,
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PRECEDING. PAGE BLANK NOT FILIED.

CHAPTER VI
CONCLUSIONS

In this dissertation we have shown how a new opera-
tion unit, called Boolean Analyzer 18, is integrated with
a general purpose computer (SDS Sigma 7 computer) to solve
certain kind of problems encountered in logic design.

After a brief survey of methods for solving systems
of Boolean equations (Chapter I) the Boolean Analyzer was
presented as a part of the UCLA Variable Structure Computer
System (Chapter II) and a computer organization of the sys-
tem formed by Sigma 7 and the Boolean Analyzer unit was
proposed. It was shown that an 1mpro;ement of a certain
power of 3 could be achleved depending upon the number of
Boolean Analyzer (BA) processors working in parallel.

In Chapter III we briefly restated, and for the

seek of completeness, the basic theorems on which the para-

llel processing feature of the BA 1s based. Its two modes

of operation were explained in detall.
The applications of the BA to solve certain proble-
ms in logic design were investigated in Chapter V: (Table XII)
1) A procedure for solving large systems of Boole~—
an equations was given and a computer program, called SOL-
DET, Appendix I, was developed to obtain all solutions of
a glven system.
2) A method was proposed to solve the classical

problem of irredundant coverings of a given Boolean function

127



‘ *andgno-oTdTaTmy = *0°') fandang -PTAUTS = +oeg
$qUeOTTAUM] SWEId POZTTRIsUS) = *I°d°D fIUEOTTWI Sufad = °*I°d {J9zATeuy URSTOOH='Y'd QNIOET

*paginbaa
*paarnbax JT SUOTJeIa3] ‘UuoTIe] saTnpout
Surumurexdoad -nduod BurTeys umwExeR Jo Aao3
TeuoT4TDPR suotqnros stqejdeode | uorgeanduo) UBUTUIOSTA ~UBAUT DPOXTJ
_+ yAFES Jo uotgeuTquod Jadoad Lreurq) T SpPoW *O°H_| woxy
parnbax JT suoTyeras] $39U TEUWT)
(€ a0 2 spow) *SwoTANTos aTqejdsooe | uoTiendo) JUEUTWLIOSTA ~BUTQUIOD. JO
HATES Jo uoT3oeTes asdoad (Areutq) I apow ‘0's sTsayquis
'z (2 3o °1°d) °*II poW
Jo *I°d S9ASTIISY + (oTpeTJa3) I 3poW
°7 sagndun) (£ Jo *1°d°*D)
€ A¥ES * JUEUTUITIOS TP WOLJ (Areutq) I opow £
+ SUOTNTOS Jadoad sjosTes (£ Jo *1°d) II SPOH wTjouNg uestood
(T @pow) svd fToaquoo sapTAcag + (9TPeTI3) T Spow Jo STSaUjuAs TNV
vz AN .HO oHo mv
Jo *I°d seAsTaay IT 3poW + I 9Pon *£ voTioUNy
2 (£ Jo °1°d) *II spoy uestoos Jo SBuTL
uoTouny J8nduo) + (OTPETI3) I PO =9A00 JUEPUNDALIT
T 9poW IATIOS  S/UTINoIMs *suby uestoog
UL hATES £q pagnduod suoTANTOS (Areutq) I SpoW Jo sueisig
2 Spop ug JUBUTUTIOSTD SSASTI3I uotsesndud
sva $10a3u00 SSPTATI] (Areutq) I SpoW JUeUTUTIOSTA
*T apoy Uy
(sya) aogeruis *squeofrdury aurad
JazATeuy Jo 3STT seAstajaa *II POy UDTJBUTIAS3D
ueatoogd $Toa3u00 SIPTAGI] + (OTpeTI3) I PO squesTTduT Sumag
aTqETTRAR (L =irg)
sueIl0ad Hsey, Janduo) 3poy wopadiaosaq
UOTFETTILS ssodmg TeIsusp wTjerado *y'g wtgedyTddy
*IIX d189VdL

HHZXTYNY NVHTIOOH SHL 40 SNOLIVOT'IddV

128



by properly using the two modes of operation of the BA. The
maln characteristic of thils approach is the ordered proces-
sing of Boolean terms which eliminates the need of combina-
torial comparlisons between terms and makes possible the re-
presentation of a Boolean term bﬁ only one bit of informa-

tion.

3) The TANT synthesis problem of logic nets was
studied and it was found that it may be solved by computing
the so called generalized prime implicants of the given
function which are the solutions of a certaln system of
Boolean equations. A computer program, called SBEV3, Appen-
dix II, was developed to obtain all the generalized prime
implicants of functions up to 3 variables.(This limitation
may be removed by using the BA Siwmulator presented in Chap-
ter V)., It was found that the results obtained agreed with
those computed manually.

4) A new approach to the general synthesis problem
of combinational logic networks using a fixed inventory of
integrated circuit modules was developed. The proposed me-
thod consists of solving a system of Boolean equatlons at
every logic level of the network to obtain all possible in-
put functions. The number of possible solutlons may be re-
duced automatically by adding designer's constraints to the
inventory of available functions. This 1nventbry is part of
the input data. The reduced number of acceptable solutions

that match the inventory are classified according to a
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weight factor which agaln may be specified by the designer.
The solutions with the desirable weight factor are retrieved
as optimum. A FORTRAN IV computer program called SBEV4 im-
plementing the proposed synthesis method was developed for
problems involving up to 9 variablesf Thls program can work
in three different modes: Mode I generates all existing
solutions, Mode II generates all properly weighted solutions,
and Mode III generates the solutions with the lowest weight.
The selection of mode of operation is done in the first data
card. To prove that the proposed synthesis algorithm is
independent of the inventory of modules the synthesis pro-
gram was used to synthesize circuits using NAND logic
elements and WOS modules. In the firét case the circult
obtained manually by standard techniques was found to be
included in the set of solutions given by the program. In
the second case circuits were obtailned that contain less
logic levels than their equivalent given in the literature.
4) An extension of the single-output synthesis method
to the multiple-output case was investigated. A new object-

ive in synthesls was sought: the maximum sharing of modules

at the last logic level. An algorithm was developed which
uses as a first step the single-output synthesis method
previously studied. The acceptable solutions to a logic

level corresponding to every output function are combined

#This limitatioh may be removed by using a memory array
for every term instead of a single word per term as done 1in
the SBEVY4 program.
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in all possible ways and a welght factor is computed to
determine which combination of solutions produces the maxi-
mum sharing of modules. An example of multiple-output WOS-
modules synthesls is presented and manually solved. Further
programming effort is needed in order to automat the multip-
le-output synthesls algorithm.

Finally a Boolean Analyzer Simulator (BAS) was deve-
loped (Chapter V). Its motivation was two fold: 1) To pro-
vide a working software package that simulates the modes of
operation of the BA in order to obtain rough computing time
measurements which could be compared wlith the estimated
processing time of the Boolean Analyzer hardware unitls.
The execution time ratio between the BA unit and the BAS
was found to be of the order of 10 to 20 thousand. The BAS
program is limited to 22 variables as the proposed BA hard-
ware unit. The number of terms that can be processed has no
limitation but the available computing time. Thils feature
is achieved by using peripheral storage media (tape or disc)
2) To provide an experimental tool for investigation of
other problems in loglc or related areas. The BAS program
wlll prove to be a valuable tool in computing the number
of existing solutions of such problems and with the help of
subprogram SOLDET(Appendix I) all possible solutions may be
obtained if so desired.

The main contribution of this dissertation has been

to present a new philosophy iIn the field of automated
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solution of problems encountered in the design of logic
circuits. This philosophy is, however, not limited to the
kind of problems presented here but we may say that in
general any problem that can be stated as a system of
Booleén equations may be solved by the automated methods

inﬁroduced in this work.

Fields for future research, where Boolean methods are
being used, are: Synthesis of Threshold Logic, Sequential
Circuits Synthesis and the Challenging field of Pseudo-
Boolean Functions and their Applications to Operations

Research problems.
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APPENDIX I
PROGRAM SOLDET
A. Flowchart corresponding to the program, called SOLDET,
which computes the truth tables of the unknown variables for every

solution of the given system of Boolean equations.

@

I=1

Store in D(I)
# of non=zero
elements in
colun I of
Discriminant F,

SeS ¥ D(I) I<-TI + 1
l 4
Call Sub=-
routine
N 450
‘ No
Legend is I > 2M2 ?
M1l # of unknowns
M2]| # of knowns
N1| 22
N2 | e
S | # of solutions
P | Discriminant
decomposition
matrix.
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Print truth
table
of every unknown

J «J+1

Il
I I+l l
is P(I) > N1 ? Sggicut.
Yes N450
P 1 Yes

N5+N+N1(I-1)
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B. Flowchart corresponding to Subroutine N450.

Subroutine
N450
Starts

Transfer
I,N1,P,F
from Maln

Kel

N7€K+N1(I-1)

Yes
is F(N7)=0 ?
K «K+1

A

P(I) «K+1

L
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- C. Listing of Pro
556 S=1 gram
DO 40 I=1,82 SOLBET
$=5%D (1)
CALL H450 (N1,I)
40 CONTINUE
44 po 80 J=1,S
DO 69 K=1,M1
po 5 J10=1, 16
5 KSOLTN (J10,K)=0
KS (K) =0
66 DO 70 K1=1,N2
K3=K 1-1
K2=P (K1) =2 ((P (K1) =2) /2% %K) *2%%K
IF (K2-2%%(K-1)) 70,68,68
68 K5 (K)=KS {K) +1
KLL=KS (K)
KSOLTN (KLL,K)=K3+1
70 CONTINUE
69 CONTINUE
65 DO 79 K=1,H81
IF (K-1) u46,64,46
46 IF (K-2) u8,62,u48
48 IF (K-3) 50,60,50
50 IF (K-4) 52,58,52
52 IP (K-5) 54,56,54
S4 WRITE (108,206)
WRITE (6,1900) IDERT (K)
206 FORMAT (3H F=)
. GO TO 75
56 WRITE (108,207)
207 FORMAT (3H E=)
WRITE (6, 1900) IDENT (K)
GO TO 75
S8 WRITE (108,208)
208 FORMAT (3H D=)
WRITE (6,1900) IDENT (K)
GO TO 75
60 WRITE (108,209)
209 FORMAT (3H C=)
WRITE (6,1900) IDENT(K)
1900 FORMAT (* IDENTIFIER:',I10)
GO TO 75
62 WRITE (108,220)
220 FOBRMAT (3H B=)
WRITE (6,1900) IDENT (K)
GO TO 75
64 WRITE (108,204)
204 FORMAT (1HO,19H °*SOLUTIONS NUMBER?Y)
IF (MODE.NE.1) GO TO 560
WRITE(108,205) J
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61 WRITE(6,210)
210 FORMAT {(3H A=)
73 KLP=KS5 (K) ,
WRITE (6,1002) (KSOLTN =
1002 FORMAT (I10) ) ! (k6,K) ,XK6=1,KLP)
79 CONTINUE
71 DO 78 I=1,N2
N8=P (I)
IF(N8.GT.N1)GO TO 76
DO 74 H=N8,N1

NS=N+N1¢I-N1
IF (F (N5).E0.0) GO TO 74
P(I)=N+1 ‘
GO TO 80
74 CONTINUE
76 CALL N450 (N1,I)
78 CONTINUER :
80 CONTINUE

SUBROUTINE N450 (N1,I)
COMMON /RST/F,P
INTEGER F(1023),P(512)
DO 454 K=1,N1
NT=K+N1*I-N1
IF (F(N7)) 452,854,452

452 P (I)=K+1
GO TO 456

454 CONTINUE

456 RETURN

: END
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APPENDIX 1II
PROGRAM  SBEV3

A. Program Listing

C***x%%SBEV3 IS A FORTRAN IV PROGRAM TO COMPUTE

c
c

15

THE GENERALIZED PRIME IMPLICANTS OF A
BOOLEAN FUNCTION OF UP TO 3 VARIABLES
INTEGER TAILS,D,COUNT,T2,STRIP,TEST
DIMENSION N(25,25),NT(25),NF(8) ,LIT(25)
WRITE (6,500)

WRITE (6,501)

READ (5,507) LIT

READ (5,502) NF

WRITE (6,502) NF

READ (5,503) NBT

IF (NBT) 2,999,2

WRITE (6,504) NBT

READ (5,505)NIND,NDEP

WRITE (6,100) NIND,NDEP

INDEX =0

READ (5,800) TAILS

DO 7 L3=1,25

po 7 L4=1,25

N(L4,L3) = 0

MX=0

IR=1

LPR=0

STRIP=1

1=0

NV=NIND+NDEP

MY=2%%NY

MI=2%#%NIND

MDEP=2%*NDEP

READ (5,101) (NT (KP),KP=1,25)

DO 6 K1=1,NV

IF (NT{K1)-9) 6,15,900

N (IR,K1)=NT (K1)

IR=IR+1

GO TO S

NTT=IR-1
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WRITE (6,102)
WRITE (6,507) LIT
WRITE (6,103) ({(¥(LP,LQ),LQ=1,25),LP=1,NIT)
17 D=1 ‘
18 INDEX=0
DO 50 K7=1,NT
10=I :
DO 32 K8=1,NV
IK=IQ/2
COUNT=MOD (1Q,2)
IF (COUNT) 310,300,310
300 COUNT=2
310 IQ=IK
L7=NTT-K7+1
L8=NV-K8+1
" TEST=COUNT+N (L7,L8)
IF(TEST-3) 32,30,32
30 INDEX=INDEX+1
GO TO 50
32 CONTINUE
GO TO 54
50 CONTINUE
IF (INDEX-NTT) 54,52,54
52 T2=1
GO TO 56
54 T2=0
56 D=D*T2
IF (D) 60,58,60
58 I=STRIP*MI
STRIP=STRIP#1
LPR=LPR+1
IP (1-2%%*NV)17,82,82
82 IF(LPR-MDEP)86,90,86
60 I=I+1
IF (I-STRIP*MI} 18,70,18
70 IX=STRIP-1
I0=1IX
STRIP=STRIP+1
DO 212 87=1,TAILS
INDEX=0
DO 210 N8=1,NIND
IK=1Q/2
COUNT=MOD (1Q,2)
IF (COUNT)410,400,410
400 COUNT=2 :
410 I0=IK
IF (COUNT-2) 210,200,210
200 INDEX=IMDEX+1
210 CONTINUE
IF(INDEX-NIND) 212,84,212
212 CONTINUE
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TERM OF THE BASE #

= 3

3NUMER OF CONSTANTS

NUMER OF UNKROWNS =

0
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APPENDIX TIII

PROGRAM SBEVY4
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DO 900 J=1,NIF
WRITE (6,1100) INPUT (J)
1100 FORMAT (I6)
900 CONTINUE
1010 FORMAT (26I3)
1001 FORMAT (I3)
2 READ ( 105,190) M1,M2
190 FORMAT (212)
IF (M1) 4,3,4
IF (M2) 4,90,4
N1=2%%H 1
N2=2%%MH2
J1=0
READ (105,200) (N4 (I),I=1,8)
FORMAT (819)
Do 8 1=1,8
II=I+J1
P (LI)=Ni (I)
IF (P(II)-900000000) 8,11,8
8 CONTINUE
10 J1=II
60 TO 7
11 T=II-1
WRITE (6,1000)
WRITE (6,1991)
1991 FORMAT (' SYSTEM OF BOOLEAN EQUATIONS:!/)
WRITE (108,310) ( P(I),I=1,II)
310 FORMAT (8I12) :
Y=0
DO 38 I=1,N2
D (I)=0
DO 38 J=1,N1
M=J+I%N1-N1

O [« VS

F (M) =M+1

L=0 -

R=0

H=M

CALL N300 (M1,M2,H,Y)
NJ=0

DO 32 N=1,T

NF=P (N)

IF (F(M)) 13,38,13
13 IF (NF) 12,27,12
12 IF (NF-222222222) 14,27,14
14 IF (NF-G44LLULLYG) 16,31,16
16 IF (NJ-1) 18,23,18
18 IF (L-1) 20,32,20
20 CALL N40O (Y,NF,Q)
IF (Q) 22,32,22
22 L=1
GO TO 32
23 IF (R-1) 24,32,24
24 CALL N40O (Y,NF,Q)
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26
27
28
30
31
32
34
36
38
1992

500
555

B0

42
203
557

1888
4y

66

68

70

69

IF (Q) 26,32,26

R=1

GO TO 32

NJ=0

IF (L-R) 28,30,28

F (M) =0

GO TO 38

L.=0

R=0

GO TO 32

NJ=1

CONTINUE

IF (F (M) .EQ.0) GO TO 38

D (I)=D(I) +1

CONTINUE

IF (MODE.NE.1) GOTO 555
WRITE (6,1992)

FORMAT (' DISCRIMINANT:!/)
WRITE (108,500) (D(I),I=1,N2)
FORMAT (2I10)

S=1

DO 40 I=1,N2

S=S%D (I)

CALL N450 (N1,I)

CONTINUE ,

IF (MODE.NE.1) GO TO 557
WRITE (6,203) S

FORMAT (I10,12H "SOLUTIONS')
IF(S.EQ.0) GO TO 84

IF (MODE.NE.2) GOTO 44
WRITE (6,1000)

WRITE (6,1888)
FORMAT (1HO, "ACCEPTABLE SOLUTIONS'/)
po 80 J=1,S

DO 69 K=1,M1

DO 5 J10=1, 16

KSOLTN (J10,K) =0

KS (K) =0

DO 70 K1=1,N2

K3=K1-1

K2=P (K1) -2- { (P (K1) -2) /2% %K) *2%%K
IF (K2-2%* (K-1)) 70,68,68
K5 (K) =K5 (K) +1

KLL=KS (K)

KSOLTN (KLL,K) =K3+1
CONTINUE

ISING (K)=0

OK (K) =0

CALL CHECK (K,M1,ISING,KS,NIF,IDENT)
IF (OK (K).EQ.0) GO To 71
CONTINUE
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WRITE (6,1900) IDENT (K)
G0 TO 75
60 WRITE (108,209)
209 FORMAT (3H C=)
WRITE (6,1900) IDENT (K)
1900 FORMAT (' IDENTIFIER:',I10)
GO TO 75
62 WRITE (108,220)

220 FORMAT (3H B=)

WRITE (6,1900) IDENT (K)
Go T0 75
64 WRITE (108,204)

204 FORMAT (1HO,19H *SOLUTIONS NUMBER®)
IF (MODE.NE.1) GO TO 560
WRITE(108,205) J
GO TO 570

560 JPL=JPL+1
WRITE (6,205) JPL

205 FORMAT (I10)

570 IF(NIF.EQ.0) GOTO 61
WRITE (6,1920) INDEX

1920 FORMAT {' WEIGHT FACTOR EQUAL TO ',I10/)
61 WRITE (6,210)
210 FORMAT (3H A=)
WRITE (6,1900) IDENT (K)
75 IF(ISING(K).EQ.1) GO TO 77
KLP=K5 (K)
73 WRITE (6,1002) (KSOLTN (K6,K),K6=1,KLP)

1002 FORMAT (I10)

GO TO 79

77 WRITE (6,1003)

1003 FORMAT (' IDENTICALLY ZERO')
79 CONTINUE
C**x%+**SOLUTION DETERMINATION: SOLDET.

71 po 78 I=1,N82
N8=P (I)
IF(N8.GT.N1)GO TO 76
DO 74 N=N8,N1

NS=N+N1#I-N1
IF (F (N5) .EQ.0) GO TO 74
P (I)=N+1
GO TO 80
74% CONTINUE
76 CALL N450 (N1,I)
78 CONTINUE
80 CONTINDE
1000 FORMAT (' *#*******t*#***#*#**********t*******'/)
IF (MODE.NE.3) GO TO 91
SOL=SOL~-1
WRITE (6, 1000)
WRITE (6,1808) OLD
1808 FORMAT (1HO,'SOLUTIONS WITH LOWEST WEIGHT: W=',I3/)
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DO 370 KPL=1ySOL
WRITE (6,204)
WRITE (6,205) KPL
WRITE (6,280)
280 FORMAT (1HO,*IDENTIFIER OF INPUTS')
370 WRITE (6,1002) {(ANSWER(KPL,KM),KM=1,M1)
GO TO 91
84 WRITE (108,213 )
213 FORMAT (38H INDEPENDENT VARIABLES RELATED THROUGH)
WRITE (108,214)
214 FORMAT (44H P=1, WHERE F IS DEFINED BY THE TRUTH TABLE)
DO 88 K=1,N2
NK=K-1
IF(D(K)) 86,88,86
86 WRITE (108,216) NK
216 FORMAT (I&4)
88 CONTINUE
91 NT=T+1
DO 89 I=1,NT
P(I)=0
89 CONTINUE
GO TO 1
90 STOP
END

SUBROUTINE N40O (Y,NF,Q)
INTEGER Y,Q,W,U,U01,W1
0=1
W=y
U=NF
DO 412 L1=1,8
U1=U/10000000
W1=W/10000000
IF (W1) 402,408,402
402 IF (U1) 404,408,404
404 IF (U1-W1) 406,408,406
406 GO TO 414
408 U=10% (U-U1%x10000000)
410 W=10% (W-W1%*10000000)
412 CONTINUE
GO TO 416
414 0=0
416 RETURN
END
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C. Output corresponding to synthesis using 3-input NAND.
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FUNCTIONS OF THE INVENTORY
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*SOLUTIONS NUMBER'
c !
IDENTIFIER OF INPUTS
255
119
240
*SOLUTIONS NUMBER®
6
IDENTIFIER OF INPUTS
255
127
240
*SOLUTIONS NUMBER®
7

IDERTIFIER OF INPUTS

240
119
255
'SOLUTIONS NUMBER?'
8
IDENTIFIER OF INPUTS
240
127
255
*SOLUTIONS NUMBER?®
9
IDENTIFIER OF INPUTS
119
255
240
*SOLUTIONS NUMBER?
10
IDENTIFIER OF INPUTS

127
255
240
*SOLUTIONS NUMBER?'
1
IDENTIFIER OF INPUTS
119
240
255
*SOLUTIONS NUMBER?
12
IDENTIFIER OF INPUTS
127
240
255
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c

104

108
110

111

112

DO 5 I=1,NT

READ (5,1020) (LOU(I,K),K=1,22)
WRITE (6,1023) (LOU(I,K),K=1,22)
WRITE (6,1004) (LIT(K3),K3=1,22)
WRITE (6,808)

DO 110 I=1,N1

L=1I-1

CALL BASE (L)

DO 108 K=1,NT

DO 104 J=1,22
TEMP=LOU (K,J) +TC (J)

IF (TEMP-3) 104,108,104
CONTINUE

R=1

L=I-1

CALL TRACK (L,A,R)

GOTO 110

CONTINUE

CONTINUE

NTF=NTF~-100

IF(NTF.LE.0)GO TO 113

IF (NTF-100) 112,111,111

NT=100

GO TO 100

NT=NTF

GO TO 100

C*xxxxMODE II
Cx***x*PRIME IMPLICANT SELECTION

C

113

114

115

120
121
122
123

K=1

DO 114 K3=1,22

TC (K3) =0 -
LOU (K,K3) =2

K=0

KT=0

I=1
BR=0
L=I-1
CALL MASK (A,K)

IF (A.NE.0)GOTO 128
CALL TRACK (L,A,R)
IF (A.NE.O) GO TO 128
L=I-1

CALL BASE (L)

K=K+1

DO 122 J=1,22

LOU (K, J) =TC (J)

IF (K.GT.100) GOTO131
L=I

CALL BASE (L)

CALL MASK (A,K)
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124
128
129
130

131

139
4o

142

143

145

150

160

162
163

170

1000
1001
1003
1004
1006
1020
1022
1023

I=I+1
IF(A) 129,130,129
I=I+1
1=I-1
CALL BASE (L)
IF(I.GT.N1) GO TO 145
GO TO 115
L=L+1
CALL BASE (L)
CALL MASK (A,K)
IF (A) 139,140,139
R=1
CALL TRACK (L,A,R)
IF(L.LT.N1) GOTO0131
DO 142 IP=1,K
WRITE (9) (LOU(IP,IR),IR=1,22)
KT=KT+K
K=1
DO 143 1S=1,22
LOU (K, IS) =2
K=0
GO TO 123 _
IF (KT.GT.100) GO TO 160
WRITE (6,1006)
DO 150 K1=1,K
WRITE (6,1003) (LOU(K1,I),I=1,22)
WRITE (6,1004) (LIT(I),I=1,22)
GO TO 1 ~
KT=KT+K
REWIND 9
K=100
WRITE (6,1006)
DO 163 IP=1,K
READ (9) (LOU(IP,IR),IR=1,22)
DO 170 K1=1,K :
WRITE (6,1003) (LOU(K1,I),I=1,22)
WRITE (6,1004) (LIT(I),I=1,22)
KT=KT-K
IF (KT.GT.100) GOT0162
K=KT '
IF (KT) 1,162,162
FORMAT (224 1)
FORMAT (4I3)
FORMAT (1H0,22I1)
FORMAT (1X,22A1)
FORMAT (1HO,'LIST OF PRIME IMPLICANTS'/)
FORMAT (22I1)
FORMAT (1H1,'TERMS OF Y=0')
FORMAT (1H0,22I1)
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SUBROUTINE BASE (L)
c
C*#x**x*BASE THREE CONVERSION OF IDENTIFIER I .
c
INTEGER LOU(500,22),TC(22)
COMMON TC,LOU
DO 320 KL=1,22
TC (KL) =MOD (L, 3)
320 L=L/3
RETURN
END

SUBROUTINE BINARY (L)
c
Cx**%%*BASE TWO CONVERSION OF IDENTIFIER L .
- _
INTEGER LOU(500,22),TC(22)
INTEGER TEMP
COMMON TC,LOU
DO 520 K1=1,22
TEMP=MOD (L, 2)
IF (TEMP) 510,512,510
510 TC(K1)=TEMP
GO TO 514
512 TC (K1) =2
514 L=L/2
520 CONTINUE
RETURN
END

SUBROUTINE MASK (A,K)
c
C#****CANCELLATION OF NON-PRIME-IMPLICANTS
c
INTEGER LOU(500,22) ,TC(22)
INTEGER TEMP,A
COMMON TC,LOU
DO 425 K2=1,K
DO 420 L=1,22
IF (LOU (K2,L)) 421,420,421
421 IF(LOU(K2,L)-TC(L)) 422,420,422
422 A=0
GO TO 425
420 CONTINUE
A=1
RETURN
425 CONTINUE
RETURN
END
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00000
00000
00001
00002
00003
00004
00005
00006
00007
00008
00009
0000A
00008
0000C
0000D
0000E
0000F
00010
00011

00000
00000
00001
00002
00003
00004
00005
00006
00007
00008
00009
0000a
00008
0000C
0000D
0000E
0000F
00010
00011

35700000
35600000
32700000
20700003
35700000
20000001
B270000D
B2300007
20D00001
B270000D
B2600007

48300006 °

32700000
32600000
E8000000

35700000
35600000
3270000D
20700003
35700000
20000001
B270000D
B2300007
20000001
B270000D
B2600007
49300006
32700000
32600000
E8000000

b bag vxg D De De Dv D ol D orxf D D ket by

o otal had De o B De D D D Mg ow D g vy

IAND

SAVE1
SAVE2
RET

IOR

SAVE1
SAVE2
RET
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DEF
BOUND
STW,7
STW,6
Lw,?7
AL,?7
STW,7
AL, 13
LW,7
1%,3
AL, 13
Lw,?7
LW,6
AND,3
Lw,?
LW,6

RES
RES
RES
END

DEF
BOUND
STW,7
STW,6
LW,7
AL, 7
STW,7
AL, 13
LW,7
LW, 3
AL, 13
LW,7
Lw,6
OR, 3
LW,7
LW,6

RES
RES
RES
END

IAND

SAVE1
SAVE2
13

RET

*13
*7

*13
*7

SAVE1
SAVE2
*RET

IOR

SAVE1
SAVE2
13

RET
1 .
*13
*7

*13
x7

SAVE1
SAVE2
*RET



B, System of Boolean Equations uiscriminant Determination,

Output corresponding to Equation (10), Section 1.1.3.

o e 3 o ke A ook e ook e e ol ke ke ok ok o ok ok e kol g ok ok ok ok ok ik Kk
Rk kkkkkkk ko kkaokkk kR kR kR kR kR Rk kg dokk

TERMS OP SYSTEM OF BOOLEAN EQUATIONS: ¥=0
KHOWN VARIABLES= 2 UKNOWN VARIABLES= 2
0201000000000000000000
ABCDEFGHIKLMNPQRSTUVWZ
0220000000000000000000
ABCDEFGHIKLMNPQRSTUVHZ
1022000000000000000000
ABCDEFGHJKLHMNPQRSTUVWZ
2110000000000000000000
ABCDEFGHIKLMNPQRSTUVHZ

s e ok o ok ok ok el e ok ol e ok ok ook ok o 3k e dk e o s koo ook ok ok kol ok Xk
DISCRIMINANT
00000000000000000111001101001011
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000

C. Prime Implicant Calculation. Output corresponding to Tables IT
and IIT (Section 3.1.).

e ook ok o ok Kok ok Aok KRR kR Rk ROk Rk R Rk Kk kR
kb dok ok ok Kok kR ok ROk R R Rk ok R kR K
TERMS OF ¥=0

0210000000000000000000
ABCDEFGHJKLMNPQRSTUVRZ
2200000000000000000000
ABCDEFGHIKLMNPQRSTUVHZ

o o e o o o koK o ok ok ok ok oK KO R ROR R RO KR R K

LIST OF PRIME IMPLICANTS

0100000000000000000000
ABCDEFGHJKLMNPQRSTUVWZ
1020000000000000000000

ABCDEFGHJIKLMNPQRSTUVHZ
Rk kR R R ok Rk ok okok Rk ROk R Aok kR Rk bk kR kK

Fdkokkkokkkk ok bk khkkokkkkkkkkkhkhkkkkkrkkE
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